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Abstract

In this age of Facebook, Instagram, and Twitter, there is rapidly growing interest in
understanding network-enabled opinion dynamics in large groups of autonomous agents.
The phenomena of opinion polarization, the spread of propaganda and fake news, and
the manipulation of sentiment is of interest to large numbers of organizations and
people. Whether it is the more nefarious players such as foreign governments that are
attempting to sway elections or it is more open and above board, such as researchers
who want to make large groups of people aware of helpful innovations, what is at stake
is often significant.

In this paper, we review opinion dynamics including the extensions of many classical
models as well as some new models that deepen understanding. For example, we look
at models that track the evolution of an individual’s power, that include noise, and
that feature sequentially dependent topics, to name a few.

While the first papers studying opinion dynamics appeared over 60 years ago, there
is still a great deal of room for innovation and exploration. We believe that the political
climate and the extraordinary (even unprecedented) events in the sphere of politics in
the last few years will inspire new interest and new ideas.

It is our aim to help those interested researchers understand what has already been
explored in a significant portion of the field of opinion dynamics. We believe that in
doing this, it will become clear that there is still much to be done.
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1 Introduction
The problem with studying human relational dynamics mathematically is that as soon as
we present such phenomena in a way that is amenable to mathematical analysis, we have
stripped away much of the nuance and, more importantly, the complexity that exist in the
real world. Of course, this is also a benefit, since it is impossible to represent such systems
in their full complexity. Therefore, the art of modeling consists in performing this reduction
in a way that leaves something of value intact.

However, carefully crafted models can provide useful insights into how real human systems
work.

In our case, we want to understand the dynamics of opinions in groups of people who
interact with each other and a context of information – what causes people to change opinions
and groups that support or oppose an opinion to gain or lose influence and power? This
is, of course a very old topic of interest. As long as there has been groups of people whose
opinions differed (and mattered), this has been of interest.

In this paper we review a partial cross section of the mathematical approaches to an-
swering these questions. While these models are all radically simplified representation of
the social and economic systems, what has been done is at least provacative and interesting.
The idea that we can mathematically model and study the evolution of opinions is not a
new one - research using a mathematical perspective dates back at least as far as John R.
P. French’s 1956 paper A Formal Theory of Social Power [1]. More recently, but still many
decades old, is the work of DeGroot in 1974 [2] and Friedkin in 1986 [3].

1.1 Mathematical Representation

When modeling opinions and their dynamics we must, at a minimum, represent the opinions
that are held as well as the means by which people interact, both influencing and being
influenced. We also need to choose how we represent time.

Opinion Spaces Opinions can be represented by both discrete variables as well as by con-
tinuous representations. For example, in a two-party election, we might represent
opinions by a discrete variable, candidate A or candidate B (Fig. 1a). In contrast,
while designing a new product, we might care about the distribution of prices that
customers are willing to pay, which we might represent by real numbers in the inter-
val [0, 1] (Fig. 1b), 0 representing some minimal amount and 1 the maximal potential
price. It is possible that one opinion be presented via an ordered pair (Fig. 1c). If one
wants to choose a favorite color based on combination of red, green and blue then the
opinion space can be the unit cube (Fig. 1d). In this paper, we focus our attention on
models of opinion spaces as intervals in R.
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(a) binary opinion space (b) continuous 1D opinion space

(c) 2D opinion space
(d) a cubical opinion space

Figure 1: opinion space examples. In Fig. 1a the opinions are binary either 0 or 1, in Fig. 1b
opinions are continuous anywhere between 0 and 1, and Fig. 1c is a two dimensional opinion
space, it could also be a triangle or a simplex.

Interactions A natural starting place for the representation of interactions is a network,
with a node for each person (we will call them agents) and an edge, representing
pairwise interactions between each pair of agents. If we have N people each with an
opinion, then there will be N∗(N−1)

2
pairs of people and possible interactions, assuming

we focus on pairwise interactions. The result is a network with N nodes and N∗(N−1)
2

possible edges, each perhaps with a weight or even two weights for influence if there is
an asymmetry in persuasiveness. If a pair of agents have different influences on each
other then the relations are defined by directed edges (Fig. 2b) and in this case the
complete-graph will have N ∗ (N − 1) directed edges. Of course, the agents can also
be media entities, in which case it is clear that there would typically be an asymmetry
in influence where a directed graph can be used (Fig. 2b).

Time We can model time as continuous (Fig. 3b), but this is usually not the choice. There-
fore, in each of the models we review in this paper, time is discrete: t = 0, 1, 2, . . .
(Fig. 3a).

1.2 Outline of the Paper

We begin by providing some definitions (Sec. 2.1) that are needed to either establish the
models or present of the results. Then we briefly present the classical models of opinion
dynamics (Sec. 2.2) for readers who are new to the field, and to refresh the memories of
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(a) undirected network (b) directed network

Figure 2: The interaction network can be undirected or directed. In an undirected graph
relationships is assumed to be symmetric and bidirectional. In opinion dynamics an arrow
from Alice to Bob means Alice puts some weights on Bob’s opinion, i.e. she listens to her.

(a) discrete time steps (b) continuous time

Figure 3: The time in the opinion dynamics can be discrete, e.g. the DeGroot model [2], or
continuous e.g. the Altafini model [4].

readers who have some knowledge of them; these classical models will be the foundations for
the extensions presented later in the paper.

In Sec. 3, we study the simple DeGroot model and its variants which permits the use of
advanced linear algebra insights and tools. In this model, the opinions of all participants
are usually updated simultaneously. In Sec. 4, we consider the bounded confidence models.
Then, in Sec. 5, models that include repulsive forces are discussed. Other works that we did
not cover in detail will also be touched upon in this section and we will make suggestion for
future research directions.

The paper is organized based on the DeGroot model and its extensions and the bounded
confidence models and their extensions. Moreover, not all concepts are applied to all the
models. For example, a repulsive behavior has not been applied to the HK model. Therefore,
Sec. 3 includes a subsection devoted to repulsive forces but the Sec. 4 does not.

Hence, the organization of the paper cannot be solely based on models or based on
concepts. The final section includes novel models and some of influential works that did not
fit into the framework of well-known models.
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1.3 Note on terminology

Before diving into the definitions we would like to mention that there is no convergence on
terminology in the literature. Many of the model names are text dependent, i.e. different
models may be known by the same name in different articles. For example, most authors by
“bounded confidence model” refer to the DWmodel [5], however, any model with a confidence
radius beyond which agents ignore each other can be referred to as a bounded confidence
model. The Hegselmann-Krause version of the bounded confidence model is given by:

o
(t+1)
i =

1

|N (t)
i |

∑
j∈N(t)

i

o
(t)
j (1)

where N (t)
i = {j||o(t)

i − o
(t)
j | ≤ ri} is the set of agents whose opinions fall in the confidence

interval of agent i at time t, i.e. hold close-enough opinions. A general framework is estab-
lished in Hegselmann-Krause’s work and then different directions are studied, all of which
are referred to as HK model in different works. Proskurnikov [6] refers to the model given by
Eq. (1) as the HK model, and not bounded confidence model. It is noteworthy that in the
DW model the update rule is a function of the difference of opinions of the pair, however, in
Eq. 1 the update is independent of differences.

In the equation above, agent i weighs its own opinion and that of other nodes equally.
Fu et al. [7] modifies it so that agent i can weigh its own opinion freely. He uses the term
“stubborn” for agents who never change their opinions; however, in other works stubbornness
refers to agents who incorporate their “initial” opinion [8], partially, to their current opinion.
Hence, a more accurate terminology could be the use of fully and partially stubborn. A
fully stubborn agent can be considered as a node that spreads a fixed opinion, regardless of
that of others - much like a source of propaganda intended to forcibly shift the opinion of a
population.

2 Basic definitions, notation and classical models
In this section we define notations and concepts that will be used globally in this paper. Local
variables that are applicable only in specific situations will be defined within the appropriate
sections.

The purpose of this section is to avoid misunderstanding and introduce ideas and termi-
nology from a variety of fields. We need the definitions to present the results. For example,
Thm. 3.4 uses graph properties and Prop. 3.1 uses properties of the weight matrix to state
relevant results. This section also clarifies confusing terminologies for first-time readers, e.g.,
consensus versus convergence. Moreover, there are terms about which the community of
researchers is not yet in total agreement, for example leaders vs stubborn-agents. We will
present all models with a unified terminology (see 2.1).

2.1 Definitions and Notations

Definition 2.1. A graph G is an object consisting of two sets, V and E, denoted by an
ordered pair G = (V,E), where V is a finite nonempty set where each of its members is
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called a vertex or node, and E is a subset of V × V where each of its elements is called an
edge. An edge connecting a given vertex to itself is called a loop. In a social network a vertex
is an agent, such as a person. An edge represents the relationship between two agents.

Definition 2.2. A path is a sequence of vertices from one node to the next using the edges.

For example the sequence v0, v1, v2, . . . , vk−1, vk is a path from v0 to vk, where vi and vi+1,
for i ∈ {0, 1, 2, . . . , k − 1}, are connected by an edge.

Definition 2.3. A connected graph is a graph in which there is a path between all pairs of
nodes.

In this work we use the terms graph and network interchangeably; vertices represent
agents; and edges represent connections between individual agents.

Definition 2.4. The number of edges connected to a vertex is called the degree of that
vertex.

Definition 2.5. If the edges in the set E given in the definition above are unordered, i.e.
unoriented, such that e = (x, y) = (y, x) = {x, y}, then the graph is an undirected graph;
otherwise, it is a directed graph or a digraph. In a directed graph, relationships can be
unilateral, such as the relationship between a judge and the person being sentenced, or
between a teacher and a student who will receive a grade.

Definition 2.6. A weighted graph has a weight assigned to each edge.

The weights associated with edges in a graph can represent various factors such as geo-
graphical distance, the probability of interaction between the two agents related by a given
edge, or the influence an agent has over another agent. For example, the weights assigned
to edges are similar to powers assigned to relationships; for example, the power of a teacher
over a student tends to be much greater than the power the student has over the teacher.
The assignment and values of weights are dependent on the goals of the model.

Definition 2.7. Two vertices vi and vj are said to be adjacent if there is an edge connecting
them. This definition gives rise to the adjacency matrix A = A(G) = (aij) = (Aij). In an
unweighted graph

Aij =

{
1 if (vi, vj) ∈ E,
0 o.w.

In a directed graph we might have aij 6= aji. Some graphs are weighted such that the weight
assigned to each edge represents the influence of each agent on the other. (The weights
also could represent the probability or the frequency of interactions, or other variables.)
In this case the adjacency matrix can also be referred to by weight matrix or influence
matrix. In this paper we use the terms adjacency matrix or weight matrix or influence matrix
interchangeably, and while each entry of the matrix will be denoted by wij the matrix itself
still will be denoted by A.

Aij =

{
wij if (vi, vj) ∈ E,
0 o.w.
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For a weighted graph, the indicator of the influence matrix A is a matrix whose entries are
1 whenever Aij > 0 and zero whenever Aij = 0. We use A for both whenever it does not
cause confusion.

Remark 2.1. Similar to A(G), which is the adjacency matrix induced by graph G, G(A) is
a graph induced by A.

Definition 2.8. A full graph or a complete graph is a graph in which all nodes are adjacent
to each other.

Definition 2.9. The set of all possible (numerical) opinions, denoted by O, is called the
opinion space. Examples of opinion spaces are {0, 1} for binary opinions, [0, 1], [−1, 1],
simplices in R, etc.

Definition 2.10. Define the indicator function by

1A(x) =

{
1 if x ∈ A,
0 if x 6∈ A

for a given set A.

Example 2.1. Let x = −0.2 and A = [−1, 1], then, since x = −0.2 ∈ [−1, 1] = A we have
1A(x) = 1. One can use the following notation as well: 1(x ∈ A) = 1.

Please note the same idea can be defined when A is a condition, and 1A(x) = 1 whenever
the condition A is met.

Definition 2.11. Opinions held by agents are defined as:

• The opinion of agent i at time t is o(t)
i .

• Let o(t) = [o
(t)
1 , o

(t)
2 , · · · , o(t)

N ] be the vector of opinions of all agents; this is also referred
to as a profile in some articles. N will denote the population of the network.

• The set of neighbors of node i is denoted by Ni when including itself, and by Nī when
excluding itself; this notation allows graphs to contain self-loops, and to use or exclude
the opinion of agent i in updates.

As mentioned before some of the terminology in the field is not standardized. For exam-
ple, Dong et al. [9] defines a leader as an agent who is connected, directly or indirectly, to
all other agents and Dietrich et al. [10] defines a leader as an agent who does not change its
opinion whatsoever. Yet, the latter definition is used to describe a fully-stubborn agent in
some other texts. We will use unified definitions for these cases.

Definition 2.12. A connected-agent is an agent that is connected directly or indirectly to
all other agents. We will denote it by CA. In the case of digraphs there is a path from all
agents to the connected agent.
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Definition 2.13. A fully-stubborn agent is an agent that does not change its opinion at
all. A partially-stubborn agent is an agent that incorporates its initial opinion in subsequent
updates, but is open to change. Stubbornness is denoted by 1− di, where di is the measure-
ment of susceptibility to influence. If 1− di = 0, then the agent i is called non-stubborn; if
0 < 1− di < 1, then the agent is called partially-stubborn; and if 1− di = 1, then the agent
is fully-stubborn.

Definition 2.14. A fully-stubborn agent that is connected directly via an edge to all other
agents is labeled as media.

The terms leader, fully-stubborn agent or media can be used in the contexts in which
agents purposefully steer or manipulate other agents toward consensus or even more specif-
ically toward a pre-determined opinion.

Definition 2.15. Let A be a given matrix. The t-th power of the matrix is denoted by
At = A× A× · · · × A︸ ︷︷ ︸

t times

.

Definition 2.16. For a dynamically changing adjacency matrix, the adjacency matrix at
time t is given by A(t).

Definition 2.17. The vector ek is a vector with 1 in its kth position and zeros elsewhere.

Definition 2.18. The consensus value is the opinion shared by all agents and is denoted by
o∗ ∈ O.

Definition 2.19. Convergence is defined as an equilibrium state, which may or may not be
the consensus state. The equilibrium state is denoted by O∗.

If the equilibrium state coincides with consensus, then all its elements are identical;
O∗ = [o∗, o∗, . . . , o∗].

Definition 2.20. Polarization refers to existence of two distinct groups that are not neces-
sarily at opposite extremes.

Definition 2.21. A bounded confidence model is a model in which agents ignore other agents
whose opinions are too far from their own and take into account the opinions of agents that
are close enough to their own. The region within which an agent considers other opinions
in is called the confidence interval of the agent. In Fig. 4 the blue intervals are confidence
intervals of agents where other opinions can be considered during an interaction. If all agents
have the same symmetric confidence interval, the interval’s radius is denoted by r. If the
confidence levels differ for left and right, they are denoted by rl and rr, respectively. Cases in
which all agents enjoy identical confidence intervals are referred to as homogenous models.
If each agent has its own confidence radius, it is denoted by ri in the case of symmetric
confidence intervals. If the confidence levels are different for left and right, they are denoted
by ril and rir, respectively; such models are referred to as heterogenous systems.
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(a) homogeneous and symmetric (b) homogeneous and asymmetric

(c) heterogeneous and symmetric (d) heterogeneous and asymmetric

Figure 4: confidence interval types. In these figures the opinion space, e.g. [0, 1], is in red and the blue lines define the area
where an interaction partner’s opinion can fall and be accepted by Alice or Bob. An agent’s opinion is shown by a white “X”. In 4a both agents
have the same confidence interval, hence the system is homogeneous (in terms of the confidence interval, not the learning rate) and the intervals
are symmetric. In 4b both agents have the same confidence interval, hence the system is homogeneous, but the intervals are asymmetric — agents
are more accepting of opinions that are closer to 1, i.e. more than the agents’ current opinion. In figures 4c and 4b we see Bob’s and Alice’s
intervals are different from each other, i.e. the system is heterogeneous. In the former case, the intervals are symmetric, while in the latter they
are asymmetric.

Note Homogeneous is used for two purposes: 1. to indicate that all agents share the same
confidence interval, or 2. to indicate that they share the same learning rate, i.e. the same
step size coefficient in updating an opinion due to an interaction. Likewise, heterogeneity
can be used for two purposes. Note that in a given system, agents can be simultaneously
homogeneous with respect to confidence interval and heterogeneous with respect to learning
rate, and all other combinations of homogeneity/heterogeneity.

To refresh the memory of readers, we briefly list the well-known models that have been
the foundation of opinion dynamics and other scientists’ works. Then we delve into the most
recently published modifications of these models.

2.2 Classical models

1. The DeGroot [2] model, a simple averaging scheme that defines a linear system that
can be analyzed by classical linear algebra, is given by

o(t) = Ao(t−1) = A2o(t−2) = · · · = Ato(0) (DeGroot)

where A is a row stochastic matrix of weights. In the original paper‚ stochastic indi-
cated row stochastic and doubly stochastic referred to a matrix whose row sums and
column sums each add up to 1. The matrix entries are the weights that a given agent
puts on other agents’ opinions, i.e. the weights determine how much a given agent
is influenced by any other agent. The updates in this model are synchronous. The
stochasticity of the adjacency matrix means that the weights each agent puts on all of
its friends/neighbors, including itself, add up to 1 or 100%. So, everything an agent
learns is calculated exactly by the amount he trusts his friends and himself.

10



2. The Friedkin-Johnsen (FJ) model, which was introduced in 1990 [11] and 1999 [12],
is given by (the FJ model is extension of the DeGroot model that includes stubborn
agents):

o(t+1) = DAo(t) + (I−D)o(0) (FJ)

where D = diag([d1, d2, . . . , dN ]) with entries that specify the susceptibility of individ-
ual agents to influence, i.e., (1− di) is the level of stubbornness of agent i, and A is a
row stochastic matrix. In this model, agents are attached to their initial opinions, and
are referred to as stubborn agents. If the adjacency matrix with entries that are influ-
ence weights is not symmetric then we can assume its associated graph is a digraph.
Updates of the system are synchronous.

3. A well-known bounded confidence model is introduced by Deffuant and Weisbuch [5],
commonly referred to as the DW model, is given by:{

o
(t+1)
i = o

(t)
i + µ . 1[0,r](|d(t)

ji |) . d
(t)
ji

o
(t+1)
j = o

(t)
j + µ . 1[0,r](|d(t)

ij |) . d
(t)
ij

(DW)

in which at any given time the pair i and j are chosen randomly and d(t)
ji = o

(t)
j − o

(t)
i .

The parameter µ is called the learning parameter or the convergence parameter and
usually is taken in the interval (0, 0.5] to avoid crossover. Please note that for the basic
DW model,

• The system is homogeneous in learning rate µ.

• The system is homogeneous in confidence radius r.

• The system updates are pairwise.

An example of a bounded-confidence model interaction in which each person has a
different level of openness/closedness would be the following: Assume Bob and Alice
participate in an interaction. If the opinion of Bob is close enough to the opinion of
Alice, i.e., Bob’s opinion falls in the blue region in 4b, then Alice learns from him and
her opinion gets closer to that of Bob. But Bob is not very open-minded toward those
whose opinions are far smaller than his own opinion, i.e., Alice’s opinion does not fall
in the blue region on the left side of Bob in Fig. 4b, therefore Bob will not learn and
his opinion will remain unchanged.

4. The most general form of the Hegselmann-Krause [13] (HK) model is given by:

o(t+1) = A(t, o(t))o(t) (HK)

where A(t, o(t)) is an arbitrary function of time and opinion. This is the HK model
in its most complex and flexible form, which is too complicated to study without
simplification: “In this generality, however, one cannot hope to get an answer, neither
by mathematical analysis nor by computer simulations.” Because Eq. (HK) is too
general to be suitable for direct analysis, Hegselmann inevitably studied simplifications
of it. Please note that the set of models studied in Ref. [13], regardless of the direction
they take are all referred to as the HK model in other research papers.
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Note that by fixing the matrix A(t,o(t)) := A the Eq. (HK) collapses to DeGroot.
Please also note that fixing the matrix takes away the bounded confidence idea and
the dynamic changes dramatically in nature.

Setting A(t,o(t)) := A(o(t)) where the adjacency matrix is only dependent on the
current profile, following the bounded confidence rule, results in a synchronous bounded
confidence model.

In Sec. 3 we study models that are based on DeGroot and FJ models , defined above,
and in Sec. 4 bounded confidence model extensions is discussed. An important difference
between DeGrootian and bounded confidence model is that the former is linear and latter is
nonlinear and more complex.

3 DeGrootian models and their applications
The DeGroot model is the simplest method used for representing opinion dynamics. Such
a simple scenario is traceable in time and opinion space, enabling researchers to produce
analytical results. Over the years, different modifications of and additions to the DeGroot
model have been used to investigate a variety of real human traits such as stubbornness (the
study of which gave rise to the FJ model in 1990); since then, the FJ model has undergone
further developments, and here we look at some of the newest results: the evolution of
the social power of agents in the DeGroot and FJ models over a sequence of topics, the
co-evolution of expressed and private opinions, the evolution of opinions given sequentially
dependent topics, and the evolution of an agent’s susceptibility to influence.

3.1 Power evolution

In any society, whether it be a colony of ants, a pride of lions, or the US house of represen-
tatives, any given member will have power over some and will be submissive to others. As
time passes and issue after issue is addressed by the society, the type of hierarchy governing
the individual agents will become more distinguishable and distinct. Depending on the par-
ticulars of the society in question, an autocrat may arise or a democracy may develop. The
phenomena of power evolution has been studied by researchers [8,14–17] and we will devote
following two subsections to this type of scenario.

3.1.1 Evolution of social power in the DeGroot model over a sequence of topics

Let us start this section with a proposition about the DeGroot model that may enlighten
the motivation for the rest of the section.

Proposition 3.1. [Ref. [18]] The DeGroot model will reach consensus if and only if there
exists a power t of the adjacency matrix for which At has a strictly positive column.

This proposition basically states that if there comes a time that everyone in the commu-
nity listens to an agent (directly or indirectly), i.e., takes his opinion into account, then the
community will come to consensus eventually.
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Proposition 3.2. [Ref. [2]] Let A be an adjacency matrix for which the DeGroot model
reaches consensus. Then the final state of the system is o∗ := o∗1, where:

o∗ = 〈`A,o(0)〉 (2)

and 1N = [1, 1, . . . , 1]T ∈ RN is the vector of size N . `T
A is the left eigenvector of A

associated with 1, i.e., `T
AA = 1`T

A, constrained to 〈1N , `A〉 = 1. Since the entries of `T
A are

non-negative, the o∗ is a convex combination of the initial opinions.

Jia et al. [15] introduced a very realistic scenario involving the evolution of social power
in which individuals become aware of their power to influence and control others and the
outcome of debate on each topic under negotiation in a sequence of topics.

Let 0N = [0, 0, . . . , 0]T be the vector of zeros with length N . Let the simplex ∆N be
the set of points in {x ∈ RN |x ≥ 0, 〈1,x〉 = 1}. A nonnegative matrix M is irreducible
if its associated digraph is strongly connected. A nonnegative matrix M is reducible if its
associated digraph is not strongly connected.

In the DeGroot model the weight matrix is static and does not change over time for the
given topic under discussion. Here we consider a sequence of topics or subjects s = 0, 1, 2, . . .
where each topic is represented by the DeGroot model, i.e., the weight matrix A does not
change over time for a given topic, although it changes from topic to topic. The changes
depend on the outcome of the previous topic, i.e., A(s+ 1) depends on the outcome of topic
s:

o(t+1)(s) = A(s)o(t)(s) (3)

Just as in the DeGroot model, each weight/adjacency matrix is stochastic. The diagonal
entries, aii, determine the degree of openness to change and the off-diagonal entries, aij,
determine the degree to which agent i is influenced by agent j. The off-diagonal entries
can be decomposed and written as aij = (1 − aii)cij where the cij values are referred to as
relative interpersonal weights. Define the matrix C := [cij] with diagonal entries equal to
zero. Then C is stochastic and we refer to it as the relative interaction matrix. Note that the
self-weights aii(s) are topic dependent, however the matrix C is static and does not depend
on the topic.

We can write

A(s) = diag([a11(s), a22(s), . . . , aNN(s)]) + (I− diag([a11(s), a22(s), . . . , aNN(s)]))C (4)

From now on we assume that matrix C, which is stochastic with zero diagonals, is irre-
ducible unless otherwise stated. Based on this assumption, the influence matrix A(s) has a
unique left eigenvector `A with non-negative entries, normalized so that 〈1, `A〉 = 1, and
associated with eigenvalue λ = 1, i.e., `A ∈ ∆N . For a large variety of the self-weight vec-
tors [a11, a22, . . . , aNN ], the eigenvector `A satisfies limt→∞At = 1[a11, a22, . . . , aNN ], which
explains consensus in the DeGroot model: limt→∞ o(t) = 〈`A,o(0)〉1. Hence, the entries of
the left eigenvector `A determine the contribution of each individual to the final state of
the system, that is, this eigenvector defines the agents’ power. This fact, also mentioned in
Props. 3.1 and 3.2, motivates the definition of the evolution of social power for a sequence
of topics:

[a11(s+ 1), a22(s+ 1), . . . , aNN(s+ 1)] = `A(s) (5)
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In other words, the self-weights for topic s+1 are equal to the agents’ power contributions
to the final state of the system for topic s. This leads us to the definition of the DeGroot-
Friedkin model.

Definition 3.1. Let a group of N agents discuss a sequence of topics s ∈ Z≥0 and the matrix
C be the relative interaction matrix. The DeGroot-Friedkin model is given by

[a11(s+ 1), a22(s+ 1), . . . , aNN(s+ 1)] = `A(s) (6)

where `A(s) ∈ ∆N is the dominant left eigenvector of the adjacency/weight matrix:

A(s) = diag([a11(s), a22(s), . . . , aNN(s)])− (I− diag([a11(s), a22(s), . . . , aNN(s)]))C (7)

The following proposition is a bridge that connects the DeGroot-Friedkin model to dy-
namical systems theory, enabling the application of this model to dynamical systems and
the establishment of results such as proof of the existence and uniqueness of fixed points.
Before introducing the proposition let us introduce `C as the left eigenvector of the relative
interaction matrix C that corresponds to the eigenvalue 1 such that 〈1 , `C〉 = 1. The ith
entry of `C is called the eigenvalue centrality score of agent i.

Proposition 3.3. Let (1, `C) be the eigenpair of relative interaction C ∈ RN×N . The
DeGroot-Friedkin model is equivalent to

diag([a11(s+ 1), a22(s+ 1), . . . , aNN(s+ 1)]) = F (diag([a11(s), a22(s), . . . , aNN(s)]))

where F : ∆N → ∆N is a continuous map given by

F (x) =


ei if x = ei,(

c1
1−x1

, c2
1−x2

, . . . , cN
1−xN

)T /∑N
i=1

ci
1−xi o.w.

(8)

and where ci is the ith entry of the left eigenvector `C.

If the relative interaction matrix C is doubly stochastic, then the left eigenvector associ-
ated with eigenvalue 1 is `C = 1/N and Eq. 9 simplifies to

F (x) =


ei if x = ei,(

1
1−x1

, 1
1−x2

, . . . , 1
1−xN

)T /∑N
i=1

1
1−xi o.w.

(9)

Proposition 3.4. If the relative interaction matrix is doubly stochastic, then the following
two properties hold true:

1. The equilibrium points of the dynamical system given by F are {1/N, e1, e2, . . . , eN}

2. For all initial conditions x(0) ∈ ∆N\{ e1, e2, . . . , eN} we have lims→∞ x(s) = 1/N .
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The second property in Prop. 3.4 indicates that the DeGroot model results in consensus
with the final opinion being an average of the initial opinions, thereby indicating equal social
ranking among agents.

The authors [15] presented conclusions and results (which are not included here) for
interaction networks, including a star graph with propositions similar to those above. We
close this subsection with the following theorem:

Theorem 3.1. Let there be N ≥ 3 nodes in an interaction network (that is not a star
graph) with a relative interaction matrix C. Let `C be the left eigenvector of C associated
with eigenvalue 1. Then, for the dynamical system defined by

[a11(s+ 1), a22(s+ 1), . . . , aNN(s+ 1)] = F ([a11(s), a22(s), . . . , aNN(s)]) (10)

we have the following:

1. The set of points of F is {x∗, e1, e2, . . . , eN} where x∗ lies in the interior region of ∆N

and the ordering of the entries in x∗ is the same as that in `C.

2. For all initial conditions x(0) ∈ ∆N\{ e1, e2, . . . , eN} we have:

lim
s→∞

[a11(s), a22(s), . . . , aNN(s)] = x∗ (11)

According to Thm. 3.1, if the network does not establish an individual with total power
as a consequence of its graph topology (i.e., the graph is not a star graph) or if in the initial
system the social ranking of individuals is not set up so that one has power over all others,
then the social ranking amongst agents will converge to an egalitarian state in which all
individuals have the same power.

Later Ye et al. [19] showed that the convergence discussed above is exponentially fast.
And they also studied the case of dynamic topology in which the matrix C changes along
the sequence of topics, i.e. C(s) is a function of s, and show the conditions under which the
same results hold true.

3.1.2 Evolution of social power in FJ model over sequence of topics

Let us now consider the idea of the evolution of power over the course of a sequence of topics
in the FJ model studied in Ref. [8]. The FJ model is an extension of the DeGroot model
in which each agent has a memory and is attached to its initial opinion at time t = 0 and
cannot completely let go of it. This model is given by Eq. FJ in §2. To refresh the readers’
memory, we repeat:

o(t+1) = DAo(t) + (I−D)o(0) (12)

where D = diag([d1, d2, . . . , dN ]) with entries that are individuals’ susceptibility to influence,
i.e., (1− di) is the level of stubbornness of agent i. Moreover, since in this subsection we are
applying the FJ model to a sequence of topics where each adjacency/weight matrix depends
on the topic s currently under discussion, we can rewrite the equation above as

o(t+1)(s) = DA(s)o(t) + (I−D)o(0)(s) (13)
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As before, we can write the adjacency matrix as:

A(s) := diag([a11(s), a22(s), . . . , aNN(s)]) + (I− diag([a11(s), a22(s), . . . , aNN(s)]))C (14)

where C is a stochastic matrix with zeros on the diagonal; however, in this section we drop
the irreducibility of C. Let us define a few concepts followed by a definition of the FJ model
modified to handle a sequence of topics.

Definition 3.2. A directed graph is said to be strongly connected if every node is reachable
from every other node, i.e. if there is a path between any node to any other node. A
strongly connected component (SCC) of a graph G is a strongly connected subgraph of G and
is maximal in the sense that no additional edge or vertex from G can be added to it without
breaking the strong connectivity property.

Definition 3.3. An SCC of graph G is called a sink SCC if there are no directed edges from
it to the nodes outside of it.

To avoid repetition, we list a few assumptions here and refer to them later, as needed.

Assumption 3.1. Every sink SCC of G(C) has at least one stubborn agent, and di < 1 if
for the self-weight vector we have [a11(0), a22(0), . . . , aNN(0)] = ei.

Assumption 3.2. ∀i di < 1, ∃j, s.t. dj > 0.

Now we are ready to define the FJ model for a sequence of topics.

Definition 3.4. Let s = 0, 1, 2, . . . be a sequence of topics, and assume Asm. 3.1 holds. Let
C be the relative influence matrix, and let D = diag([d1, d2, . . . , dN ]) be the susceptibility
matrix. Then the FJ model for a sequence of topics (FJS) is given by:

[a11(s+ 1), a22(s+ 1), . . . , aNN(s+ 1)]T = (I−D)(I−AT (s)D)−1 1

N
(15)

where the adjacency matrix, A(s), is given by Eq. 14.

Derivation of Eq. (15): By Eq. (12) we have

o(t+1) = DAo(t) + (I−D)o(0)

= DA
[
DAo(t−1) + (I−D)o(0)

]
+ (I−D)o(0)

= (DA)2o(t−1) + DA(I−D) + (I−D)o(0)

= (DA)2o(t−1) + [DA + I] (I−D)o(0)

= (DA)2
[
DAo(t−2) + (I−D)o(0)

]
+ [DA + I] (I−D)o(0)

= (DA)3o(t−2) +
[
(DA)2 + (DA) + I

]
(I−D)o(0)

...
= (DA)t+1o(0) +

[
(DA)t + (DA)t−1 + · · ·+ (DA)1 + I

]
(I−D)o(0)

(16)

Therefore, since DA is strictly sub-stochastic, we have limt→∞(DA)t+1 = 0 and

lim
t→∞

[
(DA)t + (DA)t−1 + · · ·+ (DA)1 + I

]
= (I−DA)−1 (17)
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consequently,
lim
t→∞

o(t+1) = (I−DA)−1(I−D)o(0) (18)

Assumption 3.1 implies that the system comes to consensus for each topic:

lim
t→∞

o(t) = (I−DA(s))−1(I−D)o(0) (19)

We refer to the matrix (I−DA(s))−1(I−D) as the final state matrix. The mean of the
ith column of the final state matrix given by the ith element of [(I −DA(s))−1(I −D)]T 1

N

is the relative control agent i has on the final opinions of other agents, i.e., the social power
of agent i. The transpose of the final state matrix is stochastic, and it defines a continuous
map from ∆N to itself and hence has a fixed point in ∆N . Lets denote this map by F (x):

F (x) = [(I−DA(x))−1(I−D)]T
1

N
= (I−D)(I−AT (x)D)−1 1

N
(20)

Furthermore, this map indicates that the final state of the system for topic s, and hence
the social power of agents with respect to topic s + 1, is dependent on stubbornness, i.e.,
stubbornness is equivalent to social power.

Please note that in the definition above x ∈ RN , where in Eq. 15, for simplicity and to
avoid the introduction of new notation, we use A(s) to indicate that the adjacency matrix
depends on each topic and can be written as Eq. 14, which is obtained by representing
each element of A(s) as the product Aij(s) := (1− aii(s))Cij, where the aii(s) are the self-
weights. So, A(s) emphasizes the dependence of the adjacency matrix on topic s, which in
turn depends on the self-weights [a11(s), a22(s), . . . , aNN(s)] ∈ RN .

Proposition 3.5. For the map F (x) given by Eq. 20 we have:

• F is continuous on ∆N and is differentiable in its interior region.

• ∀x ∈ ∆N , Fi(x) ∈ [1−di
N
, 1+ζ
N

] where ζ = 〈[d1, d2, ..., dN ]T ,1〉 − dmin, and dmin =
min{d1, d2, ..., dN}.

Theorem 3.2. Consider the dynamical system given by Eq. 15, and let [a11(0), a22(0), . . . , aNN(0)] ∈
∆N . Denote the set of fully stubborn agents, (i.e., di = 0) with Vf and the set of par-
tially stubborn agents (i.e., di > 0) with Vp. WLOG, assume Vf = {1, 2, . . . , r} and
Vp = {r + 1, r + 2, . . . , N}. Then,

(1) ∃x∗ ∈ ∆N satisfies:

(i) ∀i ∈ Vf ,x∗i ≥ 1
N
, and, x∗i = 1

N
iff for any j ∈ Vp,Cji = 0

(ii) ∀i ∈ Vp, x∗i >
1−di
N
, and x∗i <

1
N
if Cji = 0 for any j ∈ Vp

(iii) maxi x∗i <
1
N

(1 + 〈[d1, d2, . . . , dN ]T , 1〉)

(2) x∗ is unique if maxi di <
N

N+2(1+ζ)
.

Theorem 3.2 shows that an autocracy is not a possible outcome for the system defined
above, as constrained by the associated assumptions. Moreover, if two agents can influence
a third one, then the more stubborn agent of the two will have more social power at the end.
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Theorem 3.3. Consider the dynamical system given by Eq. 15 for which Asm. 3.2 holds,
and let ζ be defined as it was in Prop. 3.5. If maxi di <

N
N+2(1+ζ)

, then all trajectories of
the dynamical system converge exponentially fast to the unique equilibrium point given in
Thm. 3.2.

In Ref. [8] the author establishes a number of the properties for the system associated
with a star graph. Moreover, the evolution of social power is considered for a single topic,
as opposed to the evolution occurring over a sequence of topics with social power fixed for a
given topic. The author shows that the two approaches have similar behavior and equivalent
properties.

The idea of the evolution of social power over a sequence of topics has been empirically
studied in Ref. [20]. In this model, for a strongly connected network with assumptions
such as the ones outlined above, one dominant agent with maximal influence will typically
emerge, with the rest of the agents having minimal influence. An example in which the above
scenario does not happen is a fully connected graph with all individuals having the same
level of influence at t = 0. The findings of Ref. [20] involve mostly artificial experiments
in which people are represented unnaturally as interacting simultaneously. However, one
might consider a simultaneous interaction as equivalent to a pairwise interaction with a
different influence matrix. For example, agent i may be influenced by agent j at some time
t, and agent j may have been influenced by agent k at some earlier time. Hence, agent i is
influenced by agent k indirectly, which one might consider a simultaneous interaction with
agent i allocating different influence weights to j and k in two pairwise and simultaneous
interactions. It is the combination of influence weight and the frequency of interaction that
matters, really.

3.2 Susceptibility evolution

A new line of thought in opinion dynamics is considered in Ref. [21], followed by Ref. [22];
while the idea upon which it is based‚ a dynamic susceptibility to persuasion‚ has a long(er)
history in social psychology, the mathematical study of it in opinion dynamics is novel.
Susceptibility to persuasion denotes the extent to which a given agent is willing to change
its opinion. It is the opposite of stubbornness. In the FJ model:

o(t+1) = DAo(t+1) + (I−D)o(0)

Recall that D = diag([d1, d2, · · · , dN ]), where the level of stubbornness of agent i is 1−di;
therefore, by definition, di is agent i’s susceptibility to persuasion. Abebe et al. [21] built on
the FJ model by studying the effects of manipulating the di’s. It seems reasonable to assume
that the susceptibility to persuasion of the agents in a network can be influenced by different
tools. Abebe ran simulations with the goal of determining how the opinion dynamic could be
altered by changing the susceptibility to persuasion in order to maximize (or minimize) the
sum of opinions at equilibrium; such optimization translates into the network being pushed
toward one or the other of the two extreme points in opinion space, 1 or 0.

To follow Abebe’s work, take the FJ model and a simple undirected graph (where simple
means there is no self-loop in the network, i.e., Aii = 0, and Ni = Nī). Let every agent put
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equal weight on all of its neighbors’ opinions, i.e., Aij = 1/|Nī|, i 6= j. Then the update rule
for any given agent at time t can be written as:

o
(t+1)
i = (1− di)o(0)

i +
di
|Nī|

∑
j∈Nī

o
(t)
j

The system is known to have an equilibrium solution given by:

o∗ = [I−DA]−1(I−D)o(0)

Therefore, the objective, maximization of the sum of opinions, can be written as a max-
imization of

f(o(0), [d1, d2, · · · , dN ]) = 〈1,o∗〉 (21)

Abebe showed that this problem can be solved in polynomial time provided that the
susceptibility to persuasion of all agents can be modified. However, if the number of agents
is limited, the problem is NP-hard for which the author provides a greedy algorithm. Chan
et al. [22] continued Abebe’s line of work and claimed that one of his findings is wrong.
Chan also suggested an algorithm for use with large graphs. Although the aforementioned
works examine the problem from an algorithmic point of view using computer science, the
approach of changing the susceptibility to persuasion of the agents in a network existed in
psychology before being utilized in the opinion dynamics community.

3.3 Sequentially dependent topics

Let us start this section with an example. Suppose you have built a machine that produces
gears. The completed machine is making the gears, and now you want to use the gears to
manufacture mechanical wrist watches. Now suppose that back at the beginning, before
building the gear-making machine, you had not carefully considered the size of gears that
would be necessary for watches, but you went ahead and built the machine anyway. Now,
because you do not want to re-do everything, you keep the machine running, even though
the gears it produces means the wrist watches have to be extra-large and clunky. This type
of phenomena is known as path-dependency.

In reality, as in the FJ model, consensus may not occur over a single topic. However, in
psychology and path-dependence theory it has been shown that consensus can occur over
a sequence of topics that are dependent (or if a topic is arising repeatedly.) It has been
shown that the connectivity of a social network is enhanced when a sequence of dependent
topics is considered by a network. The connection between the influence network and the
network of initial opinions for successive topics can illuminate why consensus can occur
for topics later in the sequence. The quest for understanding was the motivation of Tian
and Wang [23] when considering a sequence of successively dependent topics and the agents’
related opinions/decisions (like the example above) and studying the conditions under which
a community can come to consensus or form clusters of opinions for a sequence of topics.

Moreover, in the FJ model stubborn agents are unwilling to change their opinions on a
single topic. In path-dependence theory cognitive inertia is defined as people’s unwillingness
to change their opinions over a sequence of chain-dependent topics. Hence, the FJ model
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for each topic is employed to study the opinion dynamics of sequentially dependent topics,
where the stubbornness factor is equated with cognitive inertia. In a sequence of dependent
topics an agent’s initial opinion for topic s + 1 is a function of (or a trade-off between) the
agent’s “cognitive inertia” and “being social”. In other words, each agent forms its initial
opinion for topic s + 1 by making a tradeoff between its initial opinion for topic s and the
initial opinions of others about topic s+ 1.

3.3.1 The model

Let us start by pointing out that Tian [23] uses the term interdependent in his work. However,
we prefer the term sequential dependency because the terms interrelated, interdependent
and coupled topics have been used earlier, and we believe that sequential dependency or
perhaps chain-dependency are more accurately descriptive for this scenario; Parsegov et
al. [24] discussed and defined topics that are interrelated or interdependent by: “Dealing with
opinions on interdependent topics, the opinions being formed on one topic are influenced by
the opinions held on some of the other topics, so that the topic-specific opinions are entangled.
. . . Adjusting his/her position on one of the interdependent issues, an individual might have
to adjust the positions on several related issues simultaneously in order to maintain the
belief system’s consistency.” In addition, Noorazar [25] provided the following definition for
coupling: “Change of opinion about topic sk as a result of change of opinion about topic s`
is called coupling.”

In accordance with the definitions given above, if an agent discusses topic sk (with another
agent), and as a result changes its opinion about topic sk, that agent will also change its
opinion about coupled topic s` as well, even though topic s` was not discussed during the
interaction with the other agent. For example, Alice and Bob may talk only about education,
but as a result, their opinions about gun control may also change even though they did not
mention gun control at all during their discussion. In this case it is as though the agent is
moving on a manifold or surface, such that if the agent moves in the x direction, it must also
move in the y direction in order to stay on the manifold. For this reason, we use sequential
dependency for the model proposed by Tian [23].

Suppose there is a sequence of topics s = 1, 2, 3, · · · , and we apply the FJ model to each
topic:

o(t+1)(s) = DAo(t)(s) + (I−D)o(0)(s) (22)
As before, ζi = 1−di will be the level of stubbornness, or cognitive inertia, and di will be

the susceptibility to influence. This is where the FJ model and the path-dependency theory,
in which agents exhibit stubbornness over a sequence of dependent topics, collide. For this
reason, “cognitive inertia”, ζi, is taken to be the same as the level of stubbornness, 1− di.

When presented with a topic s+ 1, agents will form an initial opinion about it; in order
to do so, a given agent i will minimize the following:

Ci(o) = ζi(oi − o(0)
i (s)) + (1− ζi)

N∑
j=1

Aij(oi − oj)2 (23)

The optimal solution, x†, satisfies

(I−DA)x† = (I−D)o(0)(s) (24)
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We need the following definition to present the results of this section.

Definition 3.5. In an SCC of digraph G, if there exists a vertex that has parents belonging
to other SCCs, we say that the in-degree of this SCC is nonzero; otherwise, we call it an
independent strongly connected component (ISCC).

Proposition 3.6. Eq. 24 has a unique solution if and only if there exists no non-stubborn
ISCC in G(A).

Proposition 3.6 allows the use of the initial opinion for topic s+ 1 as the limiting opinion
of topic s, i.e., o(0)(s + 1) = limt→∞ o(t)(s). For such a scenario/system, the authors [23]
focused on the sequence of initial opinions of the topics and defined the consensus states of
the system in terms of the initial opinions:

Definition 3.6. The system given by
o(t+1)(s) = DAo(t)(s) + (I−D)o(0)(s)

o(0)(s+ 1) = limt→∞ o(t)(s)

(25)

is said to reach consensus if: lims→∞ o
(0)
i (s) = o∗ ∈ O, ∀i.

Next we consider a topological condition that ensures the system reaches consensus in
the sense defined above,

Theorem 3.4. Suppose there exists no non-stubborn ISCC, and there is no fully stubborn
agent in the network. Then the system outlined above will reach consensus if and only if
there exists a partially stubborn agent who has a directed path to any other partially stubborn
agent.

This result, which hinges on the existence of an agent who can influence others directly
or indirectly, is similar to what we have seen before in other systems. A corollary to the
theorem above is that the system will form clusters if more than one ISCC is in the network
and vice versa.

Another reasonable case, considered in Ref. [23], has the initial opinion of a given agent
i for topic s + 1 be a weighted average of those agents whose limiting opinions on topic s
are close enough to that of agent i’s opinion on topic s. This is the bounded confidence
adaptation of the system above in which the initial opinion of agent i for topic s + 1 is
influenced only by those who hold similar opinions to him about topic s. Results similar to
those from the system above also hold true for this adaptation of the bounded confidence
dynamic.

3.4 Expressed vs. private opinions

In many situations the expressed opinion of an agent may be different from its candid belief,
e.g., such as when a candidate is trying to capture voters’ attention. Such a discrepancy
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between the private and expressed opinions of people has been studied in psychological fields,
for example by Asch [26] whose work has motivated numerous researchers [27–29] including
Ye et al. [30]. The expressed opinion of an agent is the result of pressure to conform to
the average expressed opinion of the group the agent belongs to (local public opinion), or
to conform to the group norm. And the private opinions of the agents evolve under the
influence of other agents, as a function of their expressed opinions. Of course agents have
“resilience” in the face of social pressure and therefore their expressed opinions are different
from their private opinions.

3.4.1 The model

Let the co-evolution of a given agent’s private (o(t)
i ) and expressed (õ(t)

i ) opinions is given by
o

(t+1)
i = diAiio

(t)
i +

(
di
∑

j 6=i Aij õ
(t)
j

)
+ (1− di)o(0)

i (based on FJ)

õ
(t)
i = φio

(t)
i + (1− φi)

∑
j∈Nimij õ

(t−1)
j

(26)

where we have the following:

• As before, Aij is the weight agent i puts on agent j’s opinion.

• Aii is self-confidence (self-loops are allowed).

• A is row stochastic.

• Updates are synchronous, i.e., all agents update simultaneously.

• (1− di) is the level of stubbornness and di is the susceptibility to influence.

• mij > 0⇔ Aij > 0, where
∑

j∈Nimij = 1.

• φi ∈ [0, 1] is agent i’s resilience to the pressure to conform.

• õ(0)
i := o

(0)
i

For such a system, the conditions under which the opinions converge to their limits expo-
nentially fast has been studied. The conditions under which expressed opinions and private
opinions reach constant values (i.e., consensus) have been examined as well. Ye et al. also
considered the interesting case in which the expressed opinions and private opinions of agents,
at the limit, reach a state of persistent disagreement at equilibrium that is caused by “the
presence of both stubbornness and pressure to conform.” The paper concluded with the ap-
plication of such a system to Asch’s [26] experimental studies. Let us consider the details
more carefully.

Define the vectors õ(t) = [õ
(t)
1 , õ

(t)
2 , . . . , õ

(t)
N ], o(t) = [o

(t)
1 , o

(t)
2 , . . . , o

(t)
N ]. Re-write the in-

fluence matrix A = Ã + Â where Â is obtained by setting the diagonal of A to zero
and Ã = diag([a11, a22, . . . , aNN ]). As in the FJ model D = diag([d1, . . . , dN ]), and let
Φ = diag([φ2, . . . , φN ]). We can write Eq. 29 in matrix form:[

o(t+1)

õ(t)

]
= P

[
o(t)

õ(t−1)

]
+

[
(I−D)o(0)

0

]
(27)
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where P is a block matrix:

P =

[
P11 P12

P21 P22

]
=

[
D(Ã + ÂΦ) DÂ(I−Φ)M

Φ (I−Φ)M

]
(28)

In Ref. [30], õ(0) is set to õ(0) := o(0), though other choices are possible of course, and we
get o(1) = (DA + I−D)o(0).

Recall that a directed network is called strongly connected if there is a directed path
between any pair of vertices.

Definition 3.7. A cycle is a path with equal starting and ending vertices, and no other
repeated vertices.

Definition 3.8. An aperiodic graph is a graph in which the greatest common divisor of the
lengths of all of its cycles is 1.

Assumption 3.3. Suppose the influence/weight/adjacency matrix A is stochastic, G[A] is
aperiodic and di, φi ∈ (0, 1).

Theorem 3.5. Suppose Asm. 3.3 holds and the agents’ (expressed and private) opinions
evolve according to Eq. 29. Then the system will converge, exponentially fast, to its limit:limt→∞ o(t) = o∗ = Ro(0)

limt→∞ õ(t) = õ∗ = So∗
(29)

where R = (I− (P11 + P12S))−1(I−D) and S = (I−P22)−1P21.

The theorem above shows that both expressed and private opinions at the limit depend
on the initial private profile. The initial expressed opinion is forgotten. Hence, the choice of
initial expressed profile will change the trajectory while reaching the limit, but not the final
state. The matrices R and S are positive and stochastic, which means the final expressed
and private profiles are convex combinations of the initial private profile.

Proposition 3.7. Suppose A is stochastic and the network given by it is strongly connected
and aperiodic. Also assume φi ∈ (0, 1) and there is no stubborn agent in the network (di = 1).
Then the system given by 27 converges exponentially fast to a consensus value shared by both
private and expressed opinions: limt→∞ o(t) = limt→∞ õ(t) = o∗1 where o∗ ∈ O = R.

Let us examine the conditions that determine whether a discrepancy will exist between
the private and expressed profiles. Let vmin (vmax) denote the minimum (maximum) of the
vector v.

Theorem 3.6. Suppose the assumptions of Thm. 3.5 hold and the initial private profile is
not at consensus, i.e. o(0) 6= α1, for some α ∈ R. Then we have:o

(0)
max > o∗max > õ

(0)
max

o
(0)
min < o∗min < õ

(0)
min

(30)

and õ∗min 6= õ∗max. Furthermore, the set of initial profiles o(0) for which exactly m agents will
have identical expressed and private opinions at the limit, i.e. o(∗)

k = õ
(∗)
k , lies in a subspace

of RN with dimension n−m.
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Therefore, as long as stubborn individuals are in the network, a discrepancy will exist
between expressed and private opinions. We have seen before that if every agent is maximally
open, i.e. non-stubborn, then consensus will be reached. Now we can conclude that without
pressure to conform (φi = 1), the agents’ expressed and private opinion would be the same.
An interesting result of theorem 3.6 is that there is more agreement among the expressed
opinions compared to the private opinions, at the limit.

3.5 Repulsive behavior in the DeGroot model

A recent model that incorporates the repulsion property is Ref. [31]. Dandekar et al. [32]
modified the DeGroot model to account for bias among agents in the sense that agents will
learn more from those whose opinions are closer to that of a particular agent. The modified
equation is given by:

o
(t+1)
i =

wiio
(t)
i + (o

(t)
i )bi

wii + (o
(t)
i )bi

∑
j∈Nī

wijo
(t)
j + (1− o(t)

i )bi(
∑

j∈Nī
wij −

∑
j∈Nī

wijo
(t)
j )

(31)

where oi is the level of support for opinion 1, 1− oi is (consequently) the level of support for
opinion 0, and bi ≥ 0 is the bias parameter. Hence, (o

(t)
i )bi is the weight given to neighbors

supporting opinion 1 and (1− o(t)
i )bi is the weight given to neighbors supporting opinion 0.

Dandekar’s work motivated Chen et al. [31] to devise a model that supported both bias
and repulsion, or “backfire”. In Chen’s model the opinion space is O = [−1, 1], and the
opinions products are used to assign dynamical weights to the edges, as opposed to static
ones. The opinion space is set to include negative as well as positive opinions, so that
products of opinions could be either positive (for attraction) or negative (for repulsion). The
weights on the eij edge at any given time is given by w(t)

ij = 1 + βio
(t)
i o

(t)
j . The larger the

value of parameter βi > 0 becomes, the greater the strength of both the bias and repulsion.
The update rule is given by:

o
(t)
i =


wiio

(t)
i +

∑
j∈Nī

w
(t)
ij o

(t)
j

wii+
∑
j∈Nī

w
(t)
ij

, wii +
∑

j∈Nī
w

(t)
ij > 0

sgn(o
(t)
i ) o.w.

(32)

For βi 6= 0, there are two cases:

• wij < 0: In this case repulsion occurs: βio
(t)
i o

(t)
j < −1, where o(t)

i o
(t)
j < 0, i.e., agents

hold opinions with opposing signs in O = [−1, 1].

• If wij > 0, then bias assimilation occurs.

1. βio
(t)
i o

(t)
j > 0: Both agents have either positive or negative opinions. In this case,

agent i takes agent j’s opinion more seriously if the level of agreement is high
between the two.

2. −1 < βio
(t)
i o

(t)
j < 0: opinions are opposed, but not too strongly. In this case agent

i assimilates the opinion of agent j, but to a lesser extent.

24



If the update rule stated by Eq. (32) violates the boundaries of opinion space, it is
clamped.

Consider two agents i and j, where agent j does not change its opinion. Then depending
on the initial opinion of agent i and the parameter βi, i can be attracted to j or be repulsed
by it so that i’s opinion ends up at either of the endpoints or it never changes its opinion, an
unstable equilibrium similar to an unstable fixed point in dynamical systems. Let us take a
look at a general case below.

Theorem 3.7. Let G = (V,E) be any connected unweighted undirected graph. For all i ∈ V ,
o

(t)
i ∈ (−1, 0) ∪ (0, 1), wii = 1, βi = β > 0. Let |o(t)| be the vector whose elements are
absolute values of the opinion vector and min(o(t)) be the minimum entry of o(t). Then,

• If β > 1
[min(|o(0)|)]2 , then ∀i ∈ V : |o∗i | = 1, i.e., polarization occurs.

• If β < 1
[max(|o(0)|)]2 , then there exists a unique o∗ ∈ [−max(|o(0)|),max(|o(0)|)] such that,

∀i : |o∗i | = o∗, o∗i is the final opinion of agents as time goes to infinity.

Proposition 3.8. Let G = (V,E). Let V = V1 ∪ V2 such that V1 ∩ V2 = ∅ where all agents
in V1 hold the same initial opinion o

(0)
i = o(0) ∈ (0, 1) and all agents in V2 hold the same

initial opinion o
(0)
i = −o(0) ∈ (−1, 0), i.e., the opinions are opposite in sign, but equal in

absolute value. Moreover, let wii = 1 and βi = β > 0. Then:

• If β > 1
(o(0))2 , then, ∀i ∈ V, |o∗i | = 1.

• If β = 1
(o(0))2 , then the agents’ opinions do not change over time.

• If β < 1
(o(0))2 , then there exists a unique o∗ ∈ (−o(0), o(0)) s.t. o∗i = o∗.

3.6 Managing consensus in the DeGroot model

In the history of opinion dynamics to this day, researchers mostly have been hunting the
conditions under which consensus occurs, e.g. Ref. [33]. One interesting part that has been
missing up to this point is the question of how to prevent consensus, or perhaps how to
manipulate the system to reach a desired final state, whether that state is consensus or not.
Such questions are especially relevant in the era that we are now witnessing, which features
the interference of various countries in other countries’ elections. Because of the importance
of the dynamics of interference, researchers have recently begun to investigate such phe-
nomena. The literature on interference is in its infancy, however, due to its importance we
include a discussion on it here.

Dong et al. [9] studied how to manipulate a network to reach a desired consensus, and,
if such manipulation is not possible, then how to manage the network to reach a given set
of final opinions. We will start by presenting a definition and looking at the result.

Recall that an agent who can influence all other agents, directly or indirectly, is called a
connected-agent (CA).

Definition 3.9. If agent i is not a connected-agent it is a follower.
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Denote the set of connected-agents and the set of followers by V CA and V follower, respec-
tively. Moreover, let A be the matrix of influence weights that defines a directed graph.

Consider the DeGroot model in which each agent has a positive self-weight for its own
opinion, Aii ∈ (0, 1), and is influenced by at least one agent other than itself, and distributes
equal weight among all of its neighbors; in other words, if Nī is the set of neighbors of agent
i (other than itself) who can influence it, then each neighbor’s influence on agent i is 1−Aii

|Nī|
.

Theorem 3.8. In the modified DeGroot model described above, agents will reach consensus
if there exists at least one connected-agent.

Proposition 3.9. If consensus is reached in this modified DeGroot model, the final opinion
can be expressed as a combination of the initial opinions of the connected-agents. ( o∗ =∑

vi∈V CA λio
(0)
i where λi ≥ 0.)

Theorem 3.8 makes it clear that it is sufficient to have at least one connected-agent,
(i.e., an agent that is reachable by other agents), in the network to reach consensus, and
the associated proposition suggests that it is possible to guide agents towards a particular
opinion. The goal is then to add the minimal number of edges to the network to make the
set of connected-agents nonempty. To achieve this goal, create a new graph Ĝ = (V, Ê),
obtained from G = (V,E), where E ⊂ Ê such that V CA 6= ∅.

minimize
Ê

(|Ê| − |E|)

subject to E ⊂ Ê

V CA 6= ∅

(33)

This optimization problem can be solved in two steps:

1. Form a partition M of the network into subnetworks with the following properties:

• Each subgraph has at least one connected-agent.

• The union of any pair of subgraphs has no connected-agent.

2. Add the minimum number of edges among the subgraphs in the partition to form Ĝ
(see Alg. 1).

Theorem 3.9. The Ĝ(V̂ , Ê) obtained via Alg. 1 is the optimal solution to the optimization
problem given by Eq. 33 and |Ê| − |E| = |M | − 1, where M is the partitioning of G.

The paper [9] also proposed a network modification that consisted of adding edges so that
the final state lies within a target interval o∗ ∈ [o∗l , o

∗
r]. Perhaps future work will examine

how to prevent a community from reaching consensus, such as what occurred in the most
recent American presidential election.
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Algorithm 1: Adding Edges
Input : Graph G and its partition M
Output: A new graph Ĝ with connected-agents.

1 Let Ê = E and G(i)(V (i), E(i)) ∈ M be any subgraph, let G∗(V ∗, E∗) = G(i)(V (i), E(i)) and N = M\G(i)
2 while N 6= ∅ do
3 let G(τ)(V (τ), E(τ)) be any subgraph in N
4 let Eadd = {(vk, vl)|vk ∈ V CA

Gτ , vl ∈ V
∗} ∪ {(vm, vn)|vm ∈ V CA

G∗ , vn ∈ V
τ}

5 let e be any edge in Eadd and Ê = Ê ∪ {e} (update G∗(V ∗, E∗) as follows)
6 V ∗ = V (τ) ∪ V ∗
7 E∗ = E(τ) ∪ E ∗ ∪{e}
8 N = N/G(τ)

9 end
10 return Ĝ

3.7 A general stabilization condition

Recall that in the DeGroot [2] model each agent trusts the other agents by a fixed amount,
and consequently the adjacency matrix A is fixed.

Lorenz [34] defined a model with an evolving weight (adjacency) matrix in which the
entries (i.e., the level at which agents trust others) are a function of both time and current
profile.

Fixing the weight matrix of Lorenz’s model will result in the DeGroot model. One can
also define the weight matrix in Lorenz’s model so that the model collapses to a bounded-
confidence model. As such, we use his work as a stepping stone to go from DeGrootian
models to the bounded-confidence models in the next section.

The result of Ref. [34] is given below, after the introduction of some notation. Let
A(t)(o(t)) be a stochastic adjacency weight matrix at time t that is a function of both time
and the opinion profile at time t, o(t). For simplicity we refer to this matrix as A(t). Define
the update rule by:

o(t) = A(t−1)o(t−1) = A(t−1)A(t−2)o(t−2) = · · · = A(t−1)A(t−2) · · ·A(0)o(0) (34)

Denote the last term in Eq. (34) by A(0, t) := A(t−1)A(t−2)A(t−3) · · ·A(0) or more gener-
ally A(t0, t1) := A(t1−1)A(t1−2)A(t1−3) · · ·A(t0). Using this notation we can compactly write
o(t) = A(0, t)o(0). The following theorem is provided by [34].

Theorem 3.10. Let A(t) be the adjacency matrix of the Lorenz model defined above for a
given network G = (V,E). If for any t the matrix satisfies the following conditions:

• Aii > 0

• Aij > 0 ⇐⇒ Aji > 0

• ∃ ε ∀Aij 6= 0, s.t.Aij > ε

then there exists a time t0 and a pairwise disjoint subgroups of agents Si such that ∪pi=1Si = V
and

lim
t→∞

A(0, t) = diag(K1,K2, . . . ,Kp)A(0, t0) (35)

where diag(K1,K2, . . . ,Kp) is a diagonal block matrix with blocks Ki ∈ R|Si|×|Si|. Moreover,
each Ki has identical rows.
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Theorem 3.10 states that if the adjacency matrix that assigns weights for the opinions of
neighbors satisfies the three conditions, then for any initial set of opinions, the network will
end up with separate clusters in which the agents of each subgroup come to consensus. In
each of the block diagonal matrices each entry will be greater than zero, i.e., all agents within
a subgroup will talk to any other agent in the group. This is one of the early interesting
analytical results that motivated additional studies, including a number of the following
modifications.

4 Bounded confidence models
One of the most famous types of model in the field is the so-called “bounded confidence”‚
model in which agents are influenced by those whose opinions‚ are close enough to their own.
This modification is justified by the homophily observation and the tendency that “birds of
a feather flock together.” In the model of Deffuant [5] (the DW model) the interactions are
binary, for which Monte Carlo-driven results are in abundance. However, due to the model’s
nonlinearity, theoretical results are scarce. We could mention Ref. [35] as an example of
simulation-driven work in which for a homogenous (i.e., all agents share the same level of
confidence) DW model it has been demonstrated that the confidence radius 0.5 is the limit
above which consensus occurs for a variety of network topologies. Lorenzo [36] has shown
that if two types of agents‚ open-minded and closed-minded‚ with two different confidence
radiuses are in the same network, then, counterintuitively, the final state will be consensus
for confidence levels below the critical radius (of homogenous systems) of 0.5. According to
simulations, the critical value between polarization and consensus is 0.27 for the DW model
and 0.19 for the HK model.

Later, Hegselmann and Krause [13] established the model for synchronous updates for
which theoretical results have emerged at a higher rate. Recently, the publication rate for
analytical results for minor modifications to such models has increased.

4.1 Power evolution in a synchronous bounded confidence model

We start this section by studying power evolution in a bounded confidence model to have a
consistent pattern with the last section. However, this study is a simulation based for which
analytical results do not exist.

New approaches and concepts have been introduced in Ref. [37], with agents having the
chance to change their connectivity in the digraph to maximize their influence. For example,
when the opinion space is set to O = [−1, 1], the influence of agent i is defined as Ii = |oi− ō|
where ō is the average of all the agents’ opinions. Ii = 0 indicates that the entire network
is in total agreement with agent i, who has maximum influence; likewise, Ii = 2 indicates
total disagreement with agent i. In such a scenario, agent i’s goal would be to maximize its
influence in the network. The dynamics of the model in Ref. [37] are given by the repetition
of two alternating steps:

1. Update the opinions of agents synchronously

2. Rewire the network to maximize the influence of a particular agent
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The first step is given by:

o
(t+1)
i = o

(t)
i + sηi + µ

∑
j∈Ni

Aijdji (36)

where s is a parameter that strengthens or weakens the effect of random external noise ηi,
and as before Ni is the set of agent js whose opinions fall within the confidence radius of
agent i, that is, |dji| = |o(t)

j − o
(t)
i | < r. The reason for incorporating Aij above is that

the network is not a complete graph, but a directed graph which may be incomplete. The
second step involves rewiring, which is accomplished in the following way: m agents are
chosen randomly and each of them will consider rewiring (if all do decide to rewire, m
rewirings will take place). Then each agent (such as agent i) from among the m agents,
chooses an agent out of all agents which are not currently its neighbor (suppose agent k is
chosen by agent i and they are not currently neighbors). Then agent i predicts its influence
(using Eq. 36) in the new topology where i → k, without taking into account the external
noise. If agent i’s influence has increased, then rewiring takes place. Simulations for the
above scenario can be divided in two sub-categories: endogenous and exogenous. In the
endogenous case, a large fraction of the agents in the network participate in the rewiring
step that maximizes influence. In the exogenous case, external sources compete to maximize
their influence on the network, while they themselves cannot be influenced by members of
the network. Simulations can be run for different confidence radiuses r and for various
rewiring schemes. The main results are that: for small confidence radiuses, the population
will be polarized into two sub-communities of comparable size; for medium-sized confidence
radiuses, one of the two sub-communities will be significantly larger than the other; and for
large confidence radiuses, consensus will be achievable. For more discussion of randomly
changing topologies, please consult the references given in Ref. [37].

4.2 Convergence and convergence speed of heterogeneous (in con-
fidence level) DW model

In the work of Ref. [38] a version of DW is considered in which each agent had its own
confidence bound. From a probabilistic standpoint, it is shown that when the DW model is
heterogeneous in confidence levels, the network will reach a final state in which any pair of
agents either are in agreement, or the distance between them is greater than the confidence
radius of the two. This means that if there are two communities, C1 and C2 in the network,
then C1 is at the consensus state, C2 is at consensus state, and the distance between the
two clusters, (or distance between the opinions of two group), is greater than the confidence
radius of the most open-minded agents in the two communities.

4.2.1 The model

Let us start this section with a definition.

Definition 4.1. The system almost surely comes to consensus if

p

(
lim
t→∞

o
(t)
i = o∗

)
= 1, ∀i (37)
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where o∗ ∈ O. Similarly it will almost surely converge if p
(

limt→∞ o(t) = o∗
)

= 1.

Chen et al. [38] studied a heterogeneous (in confidence radius) DW model, i.e., each agent
has its own confidence interval, and the learning rate is homogeneous.

Let N = {(i, j)| i, j ∈ {1, 2, · · · , N}, i < j} be the set of pairs that is used to select a
random pair to interact at any time. Then the update rule is defined by

o
(t+1)
i = o

(t)
i + µ . 1[0,ri](|d

(t)
ji |) . d

(t)
ji

o
(t+1)
j = o

(t)
j + µ . 1[0,rj ](|d

(t)
ij |) . d

(t)
ij

(38)

where µ is the learning rate and d(t)
ji = o

(t)
j − o

(t)
i is defined as before. In Chen et al.’s work

µ = 1
2
, and the introduction of 1[0,ri](|d

(t)
ji |) follows Chen et al.’s notation and can be dropped

with the understanding that this is in fact a bounded confidence model with updates that
take place only if agents fall within each other’s confidence intervals. Order the agents so
that the confidence radiuses of the agents are decreasing, i.e. r1 ≥ r2 ≥ · · · ≥ rn > 0. (We
will make use of this ordering later.)

Theorem 4.1. Consider the heterogeneous BC model whose update rule is given by Eq. 38.
Assume each agent has a positive confidence radius and let the interactions be performed in
a randomized pairwise fashion at any given time where all N agents of the network G are
fully connected. Then we have

∀o(0) ∈ [0, 1]N , ∃ o∗ ∈ [0, 1]N such that

• limt→∞ o(t) almost surely−−−−−−−→ o∗

• ∀i 6= j, o∗i = o∗j or
∣∣∣o∗i − o∗j ∣∣∣ > max{ri, rj}

Corollary 4.1. If the assumptions of Thm. 4.1 are met and one of the confidence bounds is
greater than or equal to 1, then the network will almost surely reach consensus for any initial
profile.

The convergence rate is established by:

Theorem 4.2. Let the opinion dynamic system be given by Eq. 38 with positive confidence
radiuses. Then for any initial state o(o) ∈ [0, 1]N there exist c ∈ R s.t.

E

 N∑
i

(o
(t)
i − o∗i )2

 = O(exp(−ct))

where E[.] denotes the expected value.
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4.3 A more inclusive bounded confidence model

In the DW version of bounded confidence, if Alice and Bob are chosen at time t, they
will interact if their opinions are close enough. In the HK model, Alice talks to all of her
neighbors whose opinions are close enough. In the two bounded confidence models of Zhang
and Hong [39] the situations are different. In the first version, at a given time Alice chooses
several agents and updates her opinion using a subset of the chosen agents. The subset
includes only the agents whose opinions are close enough to her own. In other words, the
agents whose opinions are too far away are omitted from the update. The analytical results
for this case also apply to the DW model since the DW model is a special case of the HK
model. In the second version, Alice chooses several agents and computes a weighted average
of their opinions, and if this value falls within her confidence level, then she uses it to update
her opinion. The analytical result for the first scenario is that as time goes to infinity, any two
agents are either in agreement or the distance between them is greater than the confidence
radius r which is shared among all agents. In the second scenario it is shown that as the
confidence radius increases, consensus will occur more often.

Let us define the two scenarios more formally below.

4.3.1 The model

The first scenario is called Short-range Multi-choice DW (SMDW), in which agent i has its
own choice number ci. At a given time t agent i chooses ci agents randomly, removes those
whose opinions are too far from that of its own, and then updates its opinion by a weighted
average of the opinions of the agents:

o
(t+1)
i = o

(t)
i + µi .

ci∑
j=1

wij1[0,r](|d(t)
ji |) . d

(t)
ji (39)

where ci is the number of agents that agent i selects to learn from. The influence weights
0 < wij ≤ 1 add up to 1 and they determine how much agent i is influenced by each agent
j’s opinion. Note that in Eq. 39 only those agents are taken into account whose opinions are
close to that of agent i.

The second scenario, the Long-range Multi-choice (LMDW), is introduced below. Agent
i first chooses several agents to learn from. Then the overall weighted average of the opinions
of the chosen agents are computed, and if this value falls within the confidence interval of
agent i, then an update occurs; otherwise nothing happens. This arrangement allows agent
i to be influenced by some agents whose opinions would not have fallen within agent i’s
confidence interval if they had participated in private interactions; in other words, opinions
that fall outside of the confidence radius of agent i can be influential now:

o
(t+1)
i = o

(t)
i + µi . 1[0,r](|y(t)

i − o
(t)
i |) . (y

(t)
i − o

(t)
i ) (40)

where yi =
∑ci

j=1wijo
(t)
j . Let us examine the results and implications.

Theorem 4.3. (SRMC Thm.) Let G be a fully connected graph with N nodes. Let r be the
confidence radius for all agents whose interactions are governed by the Short-range Multi-
choice Eq. 39; then, for any initial profile of the network given by o(0) ∈ [0, 1]N , one of the
two following results will almost surely hold true for any pair of agents:
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1. limt→∞ d
(t)
ij = 0

2. limt→∞ |d(t)
ij | > r

Theorem 4.4. (LRMC Thm.) Let G be a fully connected graph with N nodes. Let r be the
confidence radius for all agents whose interactions are governed by the Long-range Multi-
choice Eq. 40. Furthermore, assume ci > 1, for all i. If

r ≥ max
1≤i≤N

min
1≤j≤ci

wij

then consensus can almost surely be reached.

Another paper that derives theoretical properties of opinion dynamics that are similar
to those of Ref. [38] which is a minor modification of Ref. [39] is Ref. [40]. In Ref. [40], the
LRMC Eq. 40 is modified so that all agents choose the same number of agents, c, to look up
to and the weights wij are all equal to 1/c. The agents chosen to learn from can be chosen
with replacement. Formally, the update rule is given as follows:

o
(t+1)
i = o

(t)
i + µ · 1[0,r](|y(t)

i |) y
(t)
i (41)

where

• y(t)
i =

∑c
j=1 o

(t)
J (i,j,t)
c

− o(t)
i

• J (i, j, t) is the index of the agent selected by agent i at its jth selection at time t.

• c is a constant.

• The confidence radius r and the learning rate µ both are in the interval (0, 1).

After the following definitions we will be able to represent the final result of Zhang et
al.’s paper.

Definition 4.2. Let o(t)
[i] be the opinion of the agent whose opinion at time t is the ith largest

opinion, i.e. the ith opinion when we order opinions: o(t)
[1] ≤ o

(t)
[2] ≤ · · · ≤ o

(t)
[N ]. Then we can

define D(t)
[i,i+1] = o

(t)
[i+1] − o

(t)
[i] and the opinion range at time t by ∆(t) = o

(t)
[N ] − o

(t)
[1] .

The interesting result of this generalized model is obtained by stepping foot into the world
of probability . The following theorem puts a lower and upper bound on the probability of
consensus as a function of network population, N , confidence radius, r, and the selection
parameter, c.

Theorem 4.5. For the model defined by Eq. 41, let the population of the network be N , and
the confidence radius r be smaller than 1

c
, where c is the selection parameter. Then the lower

and upper bounds for the probability of convergence are given by:

N(cr)N−1 − (N − 1)(cr)N ≤ p( lim
t→∞

∆(t) = 0) ≤

{
N !(cr)N−1 if N ≤ d 1

cr
e,

N !(cr)N−b
1
cr
c o.w.

(42)

32



The convergence of ∆(t) to zero is the convergence of the population to consensus, and
if the assumptions outlined above are met, then we have 0 < ` ≤ p(consensus) ≤ u < 1,
where ` and u are the lower and upper bounds, respectively, defined in Thm. 4.5. Although
computing the exact probability is impossible, a simple experiment is used to support the
result.

4.4 A somewhat different bounded confidence model

In what we have seen before in BC models, any agent, like Alice, has only one confidence
radius, Alice trusts everyone equally. However, in this section we have a DW model in
which a given agent has more than one confidence radius. More precisely, Alice trusts her
friends by different amounts (See Fig. 5). These confidence radiuses are assigned to edges like
e = (i, j) = (Alice, Bob), i.e., relationships, via a random (Poisson) process. The confidence
assigned to the edge, e connecting Alice and Bob is denoted by re = rAlice-Bob. The paper [41]
that introduces this model starts by presenting analytical results for a 1-dimensional lattice
(i.e., each agent only has two friends); this is followed by simulation results obtained from
applications to ring and Barabási-Albert networks. The (analytical) result based on the 1D

Figure 5: Edge dependent confidence intervals. In this case a given agent, like Alice, has
more than one confidence interval—she has one per neighbor. She trusts different people
differently.

lattice is that 0.5 is a critical value, in the sense that if the expected value of the confidence
radiuses is below 0.5, then, with a probability of one, any two adjacent agents are either at
consensus or their opinions are far apart (by more than the confidence radius assigned to
their relationship). And if the expected value of the confidence levels is more than 0.5, then
with probability one all agents will come to consensus with all agents having opinions of 0.5.
The simulations for ring and BA networks also suggest that 0.5, as the expected value of
the confidence radius, is a critical boundary between disordered and ordered phases of the
system: the ordered phase of the network is in a consensus state, and the disordered phase
lacks consensus.
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The details are formally presented below:

4.4.1 The model

In this section we discuss a somewhat different bounded confidence model [41] that is based
on the DW model. However, in this case

• The system is homogeneous in learning rate µ.

• In this system confidence intervals are handled differently: every edge can have a
different confidence interval.

• The system updates are pairwise.

In spite of this model using a 1-dimensional lattice network, whose agents sitting on the Z
line, this modification of the DW model is interesting and will be discussed below. Originally
Lanchier [42] proposed the model and geometrically proved that if the confidence radius is
greater than 0.5 consensus will be achieved. Later Häggström [43] re-proved the conjecture,
in a probabilistic framework, that was put forward using simulations. The aforementioned
works are based on a homogenous network in which all agents share the same confidence
level; however, in this section we focus on a heterogenous version [41] where the heterogeneity
is implemented via a Poisson process.

Let o(0) be the initial profile. For a given edge e, a random unit rate Poisson process is
assigned that governs the interaction time as well as an i.i.d random variable re whose values
belong to (0, 1). Moreover, let the confidence radius r be a random variable with the same
distribution as re. Denote the opinion of a given agent, right before an interaction at time t,
by o(t−)

i = limt→t− o
(t)
i . Then the update rule is given as follows (similar to the discrete-time

DW model):

if |o(t−)
j − o(t−)

i | < re :

{
o

(t)
i = o

(t−)
i + µ(o

(t−)
j − o(t−)

i )

o
(t)
j = o

(t−)
j + µ(o

(t−)
i − o(t−)

j )
(43)

Please note that the confidence radius re is assigned to an edge, i.e., each agent will
have a different confidence radius for each neighbor. For a given edge eij = {i, j} we denote
ri = re. The graph G is the set of integers Z unless otherwise stated.

Theorem 4.6. Let an opinion dynamic be given by Eq. 43, with learning rate µ ∈ (0, 0.5]
and with ri assigned as random confidence radiuses for all i ∈ Z, then:

• if E[r] < 0.5 then ∀i, p(limt→∞ |d(t)
i,i+1| ∈ S) = 1, where di,i+1 = o

(t)
i − o

(t)
i+1 and

S = {0} ∪ [ru, 1].

• if E[r] > 0.5 then ∀i, limt→∞ o
(t)
i = 0.5.

The above theorem states that neither the final profile of the network nor the critical
confidence radius depends on the distribution of r except for its expectation. Similar to
the homogenous case, if E[r] > 0.5 consensus is observed, and below that threshold frag-
mentation occurs, with the distance between neighboring communities connected via edge
e = ei,i+1 which is greater than re.
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The extensive simulations presented in Ref. [41], show that these results hold for graphs
that include the ring- and scale-free topology of Barabási with confidence radius parameters
drawn from truncated normal distributions and from Beta distributions, each with a few
parameters. These results agree with homogenous cases [35].

4.5 Noise in Bounded Confidence Models

Even though humans are capable of rational thought, they are still essentially emotional
beings. A person may accept or reject the exact same idea depending on who is promoting
it. In the previous sections of this paper the exchange of opinions among agents has taken
place as though the agents are following a set of well-defined rules in a closed and isolated
space, unaffected by external forces, or even by internal thoughts. However, such a scenario
cannot accurately represent how opinions are exchanged in real life, where people are capable
of changing their minds based on their own internal thought processes (without one-to-one
interactions with others), or by reading (similar to a unilateral interaction in which one party
does not change its mind). Moreover, in a single interaction the transmission of opinions is
not absolutely perfect. Individuals usually find their own ways to be unique and distinct
from the population as a whole. Such disintegrating actions can as a first approximation be
represented by noise.

Hence, despite the lack of research on disintegrating forces or noise in social networks,
especially with an analytical focus, we include such sections to emphasize its importance.
The variation seen in opinion dynamics models is a testament to the difficulty of deriving
specific results while using a given model; therefore, researchers modify the models of others
to obtain desired results or to apply the models to scenarios that arise in their own fields.
Therefore, not all modifications or papers presented in this section follow the same line of
work. Let us start with analytical results for the case of noise added to the DW model.

4.5.1 The Noisy DW model

In order to eliminate the unrealistic sharp boundary between interacting and being indifferent
in the bounded confidence of the DW, Grauwin and Jensen [44] introduced a probabilistic
interaction schema to the DW model in which two agents interact with some probability that
depends on their difference of opinion, interaction noise. This allows an agent the potential
to interact with an agent whose opinion falls outside its confidence radius and to ignore
an agent whose opinion falls within its confidence radius. A second type of noise is also
considered by Grauwin and Jensen [44] that models death and birth of humans; at time t
an agent’s opinion randomly changes to a random number, they refer to it by turn over.

It has also been shown that dynamic and stable clusters can emerge in this model, as
opposed to “frozen” clusters. Moreover, the authors claim that this noise is more natural
than the one introduced by Mäs et al. [45] that is “specifically tailored to prevent consensus.”

It is shown that the introduction of interaction noise in the DW model (in the absence
of turn over) causes consensus. The DW model with the additional ingredient of the turn
over (in the absence of interaction noise) shows a different range of behaviors depending on
the death/birth probability, changes in which cause a progression from an ordered phase to
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a disordered one. In the case that both interaction noise and turnover exist in the model, a
phase transition happens for different combinations of the two parameters.

4.5.2 The model

Grauwin and Jensen [44] investigated the addition of noise to a specific DW model, namely,
the one in which the learning rate is 0.5. Said differently, an interaction means consensus
between the two interacting agents. To be more precise, the update rule is the same as
that of the standard DW model, however, the confidence rule is ignored some of the time
(determined by a probability), which is the chosen method for implementing noise. In
Grauwin and Jensen [44], two types of noise were added to the opinion dynamics:

• Type 1 Interaction noise: two randomly chosen agents at a given time step t will
interact with probability

pint =

[
1 + exp(

−1 + |dij|/r
γ

)

]−1

(44)

This noise acts as an integrating force, providing the opportunity for communities to
come to consensus.

• Type 2 At any given time t, select a random agent and, with probability ν, set its
opinion to a random number within the opinion space O = [0, 1]. This noise acts as a
disintegrating force, causing random behavior.

The probability of interaction, pint, ensures that agents with opinion differences greater
than the confidence radius r have the chance to interact, which models rational choices in
the real world. We do not just simply ignore all people who have opinions that differ from
ours by a narrow margin. Note that a large γ indicates that opinion difference is not very
important.

The second type of noise, which is studied in the social sciences, is interesting, though to
the best of our knowledge it has not been used before in opinion dynamics. The rationale
for this type of noise is that some agents may die and new ones may be introduced to the
system. Most current models consider the long-time behavior of agents as time goes to
infinity, although individual human beings cannot exist in the system for that long, due to
both death and the fact that we make and lose friends over the course of our lifetimes.

In Grauwin and Jensen [44], each community/cluster of agents is determined as follows:
the agents are ordered by their opinions; if the difference between opinions of two neighboring
agents is less than the confidence radius r, then they belong to the same group, chained
together by the confidence radius, (in other words, if the difference between two consecutive
agents’ opinions is more than r, then the number of clusters goes up by 1 and the two agents
are the borders between the two clusters).

The results of adding these two types of noise to the model are described below:

• Let ν = 0; under this condition, we add only the probability of interaction between
agents of two distinct communities separated by a distance greater than r; in other
words, γ > 0. In this case the system will end up in consensus because when two agents
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from different communities interact, their new opinions will be set to the average (since
learning rate µ = 0.5) and this causes the communities to drift from their current states
toward each other. The relationship between the parameters of the model and the time
needed for the communities to merge into one is given in [44].

• Let γ = 0, so that interactions are governed by the standard DW update rule, and
let ν > 0. As expected, when ν is small, the system exhibits behavior similar to that
of the DW model; likewise, when ν is large, chaos rules the system. In this type of
scenario, one can define order parameters and apply statistical physics routines. The
order parameter in [44] is given by

ρ = Smax

1− 3
1(
2

Smax

) ∑
i,j∈gmax

|dij|

 (45)

where gmax is the largest cluster, and Smax is the number of agents in gmax.

• Finally, it has been observed through the use of simulations that for a range of the pair
of parameters (γ, ν), lasting communities will form.

4.5.3 The Noisy HK model

In this section we consider an extension of the HK model with noise added to it. In this
section all agents share the same confidence radius r.

Su et al. [46] have shown that if the noise strength is smaller than r/2 then the noisy HK
model will almost surely reach quasi-consensus. They also state that “HK dynamics is known
to explain the divergence of opinions. However, our results reveal that the fragmentation
behavior of the HK model fails to exhibit robustness against arbitrary weak random noise and
that the mechanism of opinion divergence requires further study”. By means of simulation it
has been shown that if the initial opinions of agents are identical and noise strength is larger
than r/2, then agents will diverge at some point. If r itself is too large, then consequently the
noise will be too large as well, which causes fluctuations. Hence, the simulation that derived
the aforementioned divergence in the presence of strong noise was conducted for r = 0.01.

4.5.4 The model

Recall that the HK model is given by the following:

o
(t+1)
i =

1

|N (t)
i |

∑
j∈N(t)

i

o
(t)
j (46)

Su et al. [46] added noise to this equation to obtain the following:

o
(t+1)
i = ξ

(t)
i +

1

|N (t)
i |

∑
j∈N(t)

i

o
(t)
j (47)
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Please note that N (t)
i is the set of agents whose opinions lie within the confidence interval

of agent i at time t, i.e., |o(t)
i − o

(t)
j | < r (here all individuals have the same symmetric

confidence interval). The random noise ξ(t)
i can violate the boundaries of opinion space, in

which case we apply the clamp function to it:

clamp(x) =


0 if x < 0,
x if 0 ≤ x ≤ 1,
1 if x > 1.

(48)

so, the update rule in the violating cases is:

o
(t+1)
i = clamp

ξ(t)
i +

1

|N (t)
i |

∑
j∈N(t)

i

o
(t)
j

 (49)

We will now look at some definitions specific to this section and in the following subsec-
tions we will present experimental work related to noise as a disintegrating force.

Definition 4.3. Let the diameter of opinions associated with the graph G at a given time
t, and the limit diameter be given, respectively, by:

d
(t)
G = max

i,j∈V
|o(t)
i − o

(t)
j | and dG = lim

t→∞
d

(t)
G

Definition 4.4. Define quasi-consensus (as before r is the confidence radius):

• The system will reach a state of quasi-consensus if dG < r

• The system is said to almost surely reach quasi-consensus if p(dG < r) = 1.

• The system will not reach a state of quasi-consensus if p(dG < r) = 0.

• Let tmin = min{t | d(t′)
G ≤ r,∀t′ ≥ t}. If p(tmin < ∞) = 1, then the system will almost

surely reach quasi-consensus in finite time.

In the standard HK model, when consensus is achieved all agents share the same opinion.
In this modified version, once quasi-consensus is achieved the maximum difference of opinions
cannot exceed 2δ := 2 supi,t |ξ

(t)
i |.

The following theorems assume the disintegrating force, i.e. noise, is randomly and
independently chosen. However, in the work of Mäs [45,47], to be presented after this section,
this force is actually a function of the level of uniformity among an agent’s neighbors, the
more similar an agent is to its neighbors, the greater its willingness to be different.

Theorem 4.7. Let r ∈ (0, 1] and the noise ξ(t)
i be independent while satisfying p(ξ(t)

i ≤ δ) =

1, where δ ∈ (0, r/2], while also satisfying p(ξ(t)
i ≥ a) ≥ p for some a ∈ (0, δ) and p ∈ (0, 1).

Then, for any initial state o(0) ∈ ON , the opinion dynamics given by Eq. 47 will almost
surely reach a state of quasi-consensus in finite time, and almost surely dG ≤ 2δ.

38



Theorem 4.8. Let r ∈ (0, 1/3] and let the random noise ξ(t)
i have zero mean and be i.i.d.

with E[ξ
(t)
i ] < ∞, or independent with supi,t |ξ

(t)
i | < ∞ almost surely. If there exists an

m > 0 such that p(ξ(t)
i > r/2) ≥ m and p(ξ(t)

i < −r/2) ≤ m, then, almost surely, the opinion
dynamics given by Eq. 47 cannot reach quasi-consensus.

The next theorem follows from the previous two:

Theorem 4.9. Let the noises in the model be i.i.d with a mean of zero and be non-degenerate,
and let E[(ξ

(t)
i )2] be finite. Then the following statements hold:

• If p(|ξ(t)
i | ≤ r/2) = 1, then almost surely the network will reach quasi-consensus in

finite time.

• If the confidence radius r ≤ 1/3 and if p(ξ(t)
i > r/2) > 0 and p(ξ(t)

i < −r/2) > 0, then
almost surely the network cannot reach a state of quasi-consensus.

The above derivations indicate that when the amplitude of the noise is not too great, the
addition of noise can help lead to consensus, which is an intuitive result. A small amount of
noise may cause agent i to jump into an area of the opinion space in which many other agents
are present, and hence, the opinion of agent i and the other agents would be averaged for
the next time step. Next, we will focus on experimental studies of the uniqueness tendency,
i.e., disintegrating forces.

4.5.5 Related models

Interested readers can see Refs. [ [48–50]] for further examples of the use of noise in opinion
dynamics. For example, Ref. [49] studied the effect of noise on a modified version of the HK
model in which updates are done for a random selection of agents, and the noise is different
from what we saw previously. Furthermore, this case could be treated like temperature,
and standard statistical and physics procedures (such as dis/order parameter measurements,
computation of critical values, etc.) could be applied.

Quattrociocchi et al. [51] studied a system in which there are two networks; a network
of agents and a network of media. At a given time, agents could choose one from among
k different media to have interactions with. The agent-agent interactions as well as agent-
media interactions follow the bounded confidence rules. Since the media compete to attract
a larger audience, a good portion of agents can be influenced by a given media. Along the
same line of reasoning, an interaction force other than the pairwise interactions between
agents can exist, in which the entire network of agents is under the influence of a constant
external force [52]. This external force can be thought of as media that does not change its
opinion and is connected to everybody, or like a magnetic field that influences a system of
ferromagnetic atoms or particles. The update rule in Ref. [52] is given by

o
(t+1)
i = o

(t)
i +

1

|Nī + 1|

∑
j∈Nī

o
(t)
j wij + h

 (50)

where h is the external field constant. Quattrociocchi studied the effect of such an external
force acting in favor of a minority community in a society with two (political) parties to see if
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the external force could help the minority group take power, while also looking at the impact
of other parameters such as the relative initial population of the minority community.

4.6 Managing Consensus in a Heterogenous (in confidence radius)
DW

Pineda and and Buendía [53], studied the effect of media on the system. This simulation-
based paper considered two cases of a heterogeneous (in confidence radius) DW model: in
the first scenario, agents are divided into two groups where each group shared an identical
confidence radius; in the second scenario, each agent had its own confidence radius. Since
the paper is simulation-based, we will highlight only the main conclusions drawn from the
experiments. Let us start by presenting the general form of the model.

Let the fully connected graph G consist of N agents, and let the opinion of the external
media be denoted by oM ∈ [0, 1].

• At a given time an agent i is chosen randomly.

• The chosen agent i interacts with the media with probability pM and interacts with
another randomly chosen agent with probability 1−pM (pM is the probability of agent-
media interaction, and 1−pM is probability of agent-agent interaction.) The larger the
value of pM , the greater the probability of interaction with the media, or alternatively,
the higher/stronger the media intensity, a term first used in Pineda et al. [53].

• If agent i interacts with the media and if |o(t)
i − oM | < ri then the agent updates its

opinion according to o(t+1)
i = o

(t)
i + µi(oM − o

(t)
i ) although the opinion of the media

does not change; if the interaction is between two agents, then each agent updates its
opinion if the opinion of the other agent is within its confidence radius, i.e.,if |o(t)

i − o
(t)
j | < ri, then o

(t+1)
i = o

(t)
i + µi(o

(t)
j − o

(t)
i )

if |o(t)
i − o

(t)
j | < rj, then o

(t+1)
j = o

(t)
j + µj(o

(t)
i − o

(t)
j )

In the experiments of Ref. [53] the opinion of the media did not change as a result of
interactions and is set to oM := 1, with all agents share the same learning rate µ = 0.5. Let
us look at the results for the two scenarios.

4.6.1 Heterogenous system with two confidence radiuses

In this subsection we look at a system where individuals are divided into two groups of equal
size N1 = N2 = N/2, where agents in each group share the same confidence radius, which is
different from that of the other group, r1 6= r2. Experiments were conducted for two cases,
the first with the media absent and the second with the media present, and results were
compared.

1. No media (pM = 0) In the homogenous case where all agents shared the same confi-
dence interval, it is observed that r ≈ 0.27 is the critical point of phase transition from
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polarization to consensus. The main conclusion for the experiments of Pineda et al.
in this section, for the heterogeneous system with two confidence radiuses, was that a
consensus may occur for confidence radiuses below 0.27.

2. With media (pM > 0) In this case the experiments suggested that the final state of
system heavily depends on the initial profile. Moreover, “in most of the cases and
provided that the confidence levels are not too large, the mass media is unable to form
a majority around its opinion when the system is too homogeneous.” That is,“too ho-
mogeneous” in the sense that r1 and r2 are close to the diagonal line in the r1r2−plane.
Another conclusion suggested by the simulations is that the probability that the media
will attract more than half of the agents increases when the system is heterogeneous.

4.6.2 Heterogenous system with agent specific confidence radiuses

Let us present the results for the system where agents’ confidence radiuses are chosen ran-
domly for each agent. More specifically let ri = r0 + αsign(yi)|yi|β, where r0 is a constant,
yi is distributed in [−1, 1], the parameter α ∈ [0, r0] “represents the range of heterogeneity”,
and β ∈ [0, 9.9] “characterizes the width of distribution.” If β = 0 then agents can have
either r0 − α or r0 + α and if β > 0 then ri ∈ [r0 − α, r0 + α], the larger the beta the tighter
the interval is, i.e., the larger the beta value the more the heterogeneity is reduced.

1. No media (pM = 0) An interesting result is that there are intermediate values of β
for which the chances of obtaining consensus in the vicinity of one the extreme points
can be improved by tuning the parameter α.

2. With media (pM > 0) In this case the interesting result, which is also counter intu-
itive, is that when pM is too large the media fails to attract agents to its opinion. In
the experiments r0 := 0.35, and a large pM along with r0 caused early fragmentation
of the system which prevented the success of the media.

For more details see Ref. [53]. A variant of the HK model with different bounded con-
fidence levels was considered in Ref. [54], where it was shown that the number of opinion
clusters increased with the number of individuals who had a very low confidence radius.
The effect of the media was also studied in Refs. [ [51, 55]] under the bounded confidence
assumption.

Before introducing more references for this section, we would like to point out, again,
that consensus need not be reached in a natural environment, even if agents are assumed to
live forever. The Fig. 6 is taken from the work of Andris et al. [56] and illustrates how the
Democrat and Republican members of U.S. House of Representatives have been polarized
over time.

4.7 Mini discussion

Although the original bounded confidence model was built using the assumption of ho-
mophily to explain social interactions, its sharp cut off point, which determines who may
interact with whom, does not exist in real life. However, recent technological and cultural
changes and the rapidly increasing speed of life have resulted in an environment in which
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Figure 6: Division of Democrat and Republican party members over time [56]. “Each member
of the U.S. House of Representatives from 1949-2012 is drawn as a single node. Republican (R)
representatives are in red and Democrat (D) representatives are in blue; party affiliation changes
are not reflected. Edges are drawn between members who agree above the Congress’ threshold value
of votes. The threshold value is the number of agreements where any pair exhibiting this number of
agreements is equally likely to be comprised of two members of the same party (e.g. D-D or R-R),
or a cross-party pair (e.g. D-R). Each node is sized relative to its total number of connections; edges
are thicker if the pair agrees on more votes. The starting year of each 2-year Congress is written
above the network”

vast quantities of information are sent and received via online media whose algorithms are
optimized to learn from the actions of users and to show them topics or ideas in which they
are already interested and with which they already agree. Hence, the news items, tweets,
posts and likes that are seen by individuals will be overwhelmingly likely to support and
agree with their current opinions, and homophily is the side effect of such algorithms. This
idea is presented in Ref. [57] along with simulation results. In paper [57], the DW version
of the bounded confidence model (i.e., with pairwise interaction) is modified so that the
probability of interaction between two agents, whose opinions lie within the confidence ra-
dius, is dependent on the difference of their opinions. The smaller the difference, the greater
the probability of interaction between randomly chosen pairs. In this model, after agent i
is chosen randomly, the interaction partner is then chosen from among agents j for whom
|dji| = |oj − oi| < r with probability pi(j) =

|dij |−γ∑
k 6=i |dik|−γ

. The parameter γ tunes the degree
of homophily or bias. The effects of such modification are the following:
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• The system will end up with fragmented groups of agents, whereas in the original
model, the same settings resulted in consensus.

• The time needed to reach steady state or equilibrium is significantly increased.

• The average distance between opinions is also increased.

An interesting idea is presented in Pilyugin and Campi [58] where the “reinforcement the-
ory” of the social sciences meets opinion dynamics. He used the update rule o

(t+1)
i =

o
(t+1)
i + µ

|Ni|
∑

j∈Ni o
(t)
j in the bounded confidence fashion in opinion space O = [−1, 1]. He

remarked the fact that since µ
|Ni|
∑

j∈Ni o
(t)
j includes the agent i itself, “i in absence of counter-

arguments, tends to strengthen her/his own initial opinion” and “drift towards a higher level
of belief in the absence of opposite voices,” which is in agreement with reinforcement theory.
Of course the update rule can violate the boundaries. (Imagine agent i with no one in its
confidence interval. It will strengthen its own opinion.) So, the new opinions will have to be
clamped. To be precise, the update rule actually is o(t+1)

i = clamp(o
(t+1)
i + µ

|Ni|
∑

j∈Ni o
(t)
j ).

The operator that maps o(t) = [o
(t)
1 , o

(t)
2 , · · · , o(t)

N ] to o(t+1) was considered in Ref. [58] and
it is shown that the operator’s basic fixed points are asymptotically stable and the nonbasic
fixed points are unstable. Basic fixed points are of the form [−1,−1, · · · ,−1, 1, · · · , 1]. For
a discussion of nonbasic fixed points, please see Ref. [58]. It was also shown that if the
confidence radius is r ≤ 0.5 then the trajectories of the operator above will go to fixed
points. Pilyugin viewed this continuous dynamic model as a tool for analyzing the voting
process in a system in which only one outcome, either 1 or -1, is allowed; by the use of
simulations, he arrived at the conclusion that the outcome of elections can vary depending
on the level of interaction of society, i.e. depending on the size of the confidence radius.

Another work that includes a novel modification of the DW model is Ref. [59], in which
the learning rate is a function of opinion differences in single interactions. Using this scenario.
Reference [59] studied convergence time and the probability of consensus via Monte Carlo
simulations.

We would like to flashback to the question posed in the Sec. 1 about the limitations
that prevent people from interacting synchronously and introduce two works that address
this limitation. Perra and Rocha [60] states, “We are bounded by cognitive and temporal
constraints. Our attention is limited.” Because of these limitations, which are ignored in
synchronous models, our attention is valuable. Commercial companies or political parties
must compete to gain and hold our attention. Social medias, such as Facebook, are utilized to
obtain the attention of users for various reasons, such as to increase revenue or to influence
voting decisions. Therefore, the information revealed to each user is filtered by machine
learning algorithms to increase the likelihood of the desired outcome. Perra and Rocha [60]
makes use of three types of filtering; random filtering, time ordering and the accumulation of
past ideas, likes, etc., expressed by the user‚ to study the filtering effect on opinion dynamics.
Perra demonstrated that the distribution of opinions is affected by the filtering algorithm,
especially when the filtering is based on the past behaviors of users. The simulations were
then applied to three different networks; a random network, a Watts-Strogatz network and a
2D lattice‚ and it was also shown that if social media sends a particular opinion to a fraction
of users regularly, such messages can affect their behavior and users can be manipulated
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toward a given opinion. This result is similar to what we have already seen in other cases
for fully-stubborn agents.

The fact that synchronous interactions are unrealistic was also noted by Patterson and
Bamieh [61]. They modified the DeGroot model, O(t+1) = AO(t), to consider the interaction
frequency between agents in the following way:

O(t+1) =

I−
∑

(i,j)∈E

δ
(t)
ij AijLij

O(t) (51)

Please note that Aij are scalars, (i.e., entries located at the (i, j) position of the weight
matrix A), and Lij is a matrix associated with the edge (i, j) ∈ E of the graph G. More
precisely, the matrix Lij is associated with the subgraph Gij, which only has the edge (i, j)
in it and it is referred to as the weighted Laplacian matrix of the Gij, and one can write
A = I−

∑
(i,j)∈E Lij. Furthermore, the δ(t)

ij ’s are independent random variables taking a value
of 1 with probability pij and a value of 0 with probability 1− pij. The interaction frequency
is captured by a probability of communication. Furthermore, the consensus conditions and
efficiency (i.e., convergence rate) were analyzed along with the network modification to
improve the efficiency of both the classical DeGroot model and the altered DeGroot model
described above.

4.8 Extensions and related models

Before moving on to the next section we list some interesting bounded confidence models.
A recent bounded confidence model is found in Ref. [62], in which opinions lie in oi ∈ Rd.

The interactions are pairwise; a random agent i, selected from a fully connected graph,
chooses a random neighbor, and if ||oi

(t) − oj
(t)||2 < r, then both agents will converge to

the mean of their opinions in each dimension, i.e., oi
(t+1) = oj

(t+1) = 1
2
(oi

(t) + oj
(t)), i.e., the

learning rate is 0.5. Therefore, if the matrix of opinions of all N agents is given by O ∈ RN×d,
where each row represents an agent, then at each time step two rows will become identical.
Let the graph be a fully connected one, and define W(i, j, t) = I − 1

2
(ei − ej)(ei − ej)

T ,
which is a matrix with 0.5 at positions (i, i), (i, j), (j, i), (j, j) and zeros elsewhere, so that
O(t+1) = W(i, j, t)O(t) defines the update after the interaction between i and j. Then the
equilibrium point of the system, O∗, satisfies O∗ = W(i, j, t)O∗ for any t ≥ T ∗. For the
system mentioned above at equilibrium, any two agents i and j will either be at consensus
or separated by a distance greater than the confidence radius r:

oi
∗ = oj

∗ or ||oi
∗ − oj

∗||2 ≥ r

It has also been shown that the bounded confidence mentioned above, with learning rate
0.5, for any initial opinion in Rd, will almost surely reach such an equilibrium state. This
intuitive result is also obtained in Ref. [34] and Refs. [38, 63, 64] for different versions of
bounded confidence models.

In the above system the confidence radius is fixed. Now consider an iterative version
of the system, whereby the game is repeated as follows: 1. initialize O(0), and run the
game until the system reaches its equilibrium; 2. at this point, use the equilibrium state as
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the initial state of the next round, with the confidence radius increased by ∆r, so that for
the second round we have r := r + ∆r. The iterations can be repeated until a predefined
maximum confidence rmax is reached. This approach allows the number of clusters to be
reduced as the confidence radius is increased.

Two interesting ideas that are related to HK-type dynamics were introduced in this model
in [65]. For the first novel idea, let the opinion space be Rk, let agents i and j communicate
whenever ||oi− oj||2 ≤ 1, and define the update rule by o(t+1)

i = (1− λi)o(t)
i + λi

|Ni|
∑

j∈Ni o
(t)
j ,

where λi ∈ [0, 1] is called inertial (note that self-loops exist in the above equation). It
has been shown that such a system converges asymptotically when λi ∈ {0, 1}, and in one
dimension the convergence is exponentially fast. The second novel idea involves an anchored
HK system. In this system each agent is identified by zi = (o

(t)
i , yi), where o(t)

i ∈ Rk is
the moving part of agent i and yi ∈ Rk̂ is the fixed part. Two agents interact whenever
||z(t)

i − z
(t)
j ||2 ≤ r, for some value of r. The fixed part plays a role only in the communication

graph and determines whether i and j are neighbors at any given time. The authors of
[65] show that an anchored system like this has a symmetric heterogeneous HK equivalent.
(A symmetric heterogeneous HK system is a system in which each edge is assigned its own
confidence radius; in other words, agents i and j each have their own confidence radius
when they interact with each other.) We would also like to mention that in almost all
models/papers, the equilibrium of the system when the interactions stop is determined as if
agents have global knowledge of the system. Xie et al. [66] built on the work of others [67,68]
and considers a local stopping criteria in a system where agents are only aware of their
neighbors. In most of the literature, the dynamics and the simulations stop with a knowledge
of the global state of the network, or after a large number of steps have been taken. Such
results are questionable when modeling actual systems with real-life agents that need not
know the global state of the network they live in. In addition, the asymptotic state of the
network also depends on topology and the initial state of the system, and computing the
needed number of iterations may be hard, impossible or unrealistic for time varying networks.

5 Further Work and Further Questions
In this section we provide more models worthy of notice and end the paper with questions
that are not studied yet.

5.1 Other works

In the following subsections we include newly developed models, influential works that are
not variation of DeGroot or bounded-confidence models and provide pointers so more works
of researchers.

Let us start with models supporting the repulsive behaviors that exist in real life–whether
in human interactions, the interactions of gas molecules or birds flying together.

Noorazar et al. [25] introduced a rich and flexible opinion dynamic model inspired by
energy functionals from physics. In this model two interacting agents have an energy between

45



them that is a function of their opinion difference. The update rule is given by
o

(t+1)
i = o

(t)
i −

µ
2
ψ′(|d(t)

ij |)
d

(t)
ij

|d(t)
ij |

o
(t+1)
j = o

(t)
j + µ

2
ψ′(|d(t)

ij |)
d

(t)
ij

|d(t)
ij |

(52)

where ψ is the energy function and µ is the learning rate. In this model, potential functions
can be agent specific. Assigning potential functions to edges (i.e., defining interaction-
partner-dependent potential functions) will make the system highly complicated and flexible.

It has been noticed that, for example, the DW model is a special case of this model if
the ψ is given by Fig. 7a, in which case we have ψ(x) = x2 when x < 0.5, and ψ′(x) = 0
beyond that. By changing the flat part of Fig. 7a to a decreasing function, as shown in
Fig. 7b, we can easily obtain repulsive behavior. We also note that: One can also take
the BCM potential function, shown in Fig. 7a, and smooth out the function at τ so that it
is differentiable, thus solving the problem of the sharp transition between acceptance and
rejection in the BC model.

(a) BCM potential function (b) BCM repulsive

Figure 7: BCM potential function and an alternative. Using 7a as the potential function in
Ref. [25] induces the bounded confidence model and using 7b will cause the regions of indifference
in BC models be replaced with repulsive behavior.

Two other simple potential functions are given below in Fig. 8. The tent potential
function, Fig. 8a, supports both attraction and repulsion. Whether attraction or repulsion
occurs depends on the ‚ opinion difference‚ which can be thought of as a time-varying
topology that is not arbitrarily random, as it was in Ref. [69]. The attraction or repulsion,
i.e., friendship and antagonism, at any given time is governed by the potential function,
but the randomness of the relationship between a pair of agents is due to random pairwise
interactions that have led the two agents to their current positions. Finally, Fig. 8b, is
the flat top tent potential function, which gives an agent the option of behaving in one
of three modes; attraction, indifference and repulsion, making the model even richer and
more flexible. Besides discussing repulsive behavior, Ref. [25] also covers the modeling of
interrelated topics in both discrete and continuous topic space.

The second class of models that support repulsive behavior is based on the idea of bal-
anced networks. Let us start with the definition of structurally balanced networks.

Definition 5.1. Consider a fully-connected network of 3 agents where each edge between
them is assigned a relationship status of either friend (+) or adversary (-) (See Fig. 9.)

46



(a) tent function (b) skewed flat top tent

Figure 8: Potential function examples

The 3-agent fully-connected network is said to be structurally balanced if it has either 1
or 3 positive signs (the product of the 3 signs is positive in these cases). A network with
more than N = 3 agents is said to be structurally balanced if every fully connected 3-node
subgraph in it is structurally balanced.

An immediate consequence of the above definition is that a structurally balanced network
can be divided into two subgroups where the relationships within subgroups are friendly and
the relationships between subgroups (any two agents from different subgroups) are adversar-
ial. Moreover, it is assumed that any pair of connected agents are aware of their relationship,
and, their relationship is either friendly or adversarial.

Altafini [4] used theories presented in Refs. [70, 71] to model a structurally balanced
community with a dynamical system approach; namely, a monotone dynamical system, with
its well-known properties, was used to model this type of social community. A structurally
balanced network is a community that is divided into two antagonistic sub-communities, and
agents within a given sub-community are friendly/cooperative and have a positive influence
on each other, whereas agents from different sub-communities are adversaries/antagonistic.
In this model the relationships among agents remain constant‚ they are either on good
terms or they are adversaries. Relationships are also independent of opinions or opinion
differences; it is therefore possible for two agents with widely different opinions to attract
each other, and agents with close opinions need not attract each other. The nature of
these relationships is expressed via constant signs on the edges: a positive sign indicates
friendship and a negative sign, antagonism. Friends, who by definition belong to the same
sub-community, are connected to each other by edges with positive weights assigned to them,
and inter-community edges are assigned negative weights to model antagonism.

Clearly, the structure of the graph makes the final state of the system predictable: po-
larization is inevitable unless all members of a given sub-population decide to join the other
party.

The edge weights that define the relationships between pairs of agents are translated into
directional derivatives of the functional defining the dynamics of the system. See Ref. [4] for
more details. Later the model is extended to explain how it is possible for agents in such
a system to reach opinions of equal size but opposite sign [72]. In the works mentioned so
far in this section, opinions belong to O = R. Later, Altifani [72] studied the consensus
problem using this model and Proskurnikov et al. [69] investigated the use of an arbitrary
time-varying signed graph with this model.
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(a) Everyone is friendly: balanced (b) Two friends have a mutual adversary: bal-
anced

(c) The antagonistic relationship may effect the
friendship relationships: imbalanced (d) All enemies: imbalanced

Figure 9: Structural balance among three agents. Balance requires either 1 or 3 friendship
relationships, otherwise the structure is imbalanced. A graph with more than N = 3 agents
is balanced if all of its fully connected 3-agent subgraphs are balanced.

Proskurnikov et al. [69] built on Altafini’s model using a network that is not static;
specifically it is not required to be structurally balanced at the beginning. Such a system
can reach a structurally balanced state at some time t > 0. For further reading on the origins
of evolving networks and the conditions for reaching a structurally balanced topology, please
see Ref. [69].

Altafini and Ceragioli [73] extended his work to include the case of repulsive behavior as
well. In what follows, we briefly explain his recent work. Consider an opinion dynamic with
opinion space O = R or O = [−1, 1], or any opinion space, really, which contains a point
of neutrality (in the cases mentioned above, zero would be the neutrality point). Positive
opinions would be the strength of agreement on a given topic and negative ones would be
the strength of opposition to it. Altafini and Ceragioli [73] argued that agents with opinions
near zero might fall within each other’s confidence radiuses. However, moving from one side
of zero to the other is not easy in the real world, and does not happen frequently. Hence,
they added three separate components to his earlier work; incorporated into the bounded
confidence model, these additions resulted in three new models. In the first model (which
is similar to his earlier work) if agents i and j have close opinions that differ in sign, they
will be attracted to the opposite of the opinion of the other. In the second model, agents
with opinions of opposite signs ignore each other, and in the third, agents whose opinions are
close enough and of opposite sign, repel each other. Therefore, opinions in these three models
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always retain their initial sign during time evolution, and the models are referred to as signed
bounded confidence models. These results were motivated by and compared with the results of
the ordinary bounded confidence model with continuous time (the derivation of this model is
shown in interesting works referenced in Ref. [73]. Zhang and Chen [74] built on earlier work
of their own [75] along with Altafini’s [72] work and designed an “output feedback control law”
to study consensus in networks that included antagonistic interactions in conjunction with
strongly connected graphs, spanning tree graphs and graphs with spanning trees. His work
provided results for such scenarios when the network is structurally balanced or unbalanced.

Some recent interesting work related to antagonism includes the following: Yang and
Song [76] mapped social networks onto electrical networks, with each interaction node be-
tween agents being mapped to a link in an electrical network and with the resistance (or
rather conductivity) of each link representing the interaction/influence weight of the agents
on each other. She used the effective conductance (EC) concept to measure the direct and
indirect relationships of a given pair of agents whose interactions are defined by a DeGroot-
type update rule: o(t+1)

i = o
(t)
i +λ

∑
j∈Nī

wij(o
(t)
j −o

(t)
i ). In the update rule it is assumed that

wij = wji ∈ R. Hence, this model also assumed antagonistic interactions with no assumption
on the structure of the graph, and a positive EC that would indicate, overall, the direct and
indirect nature of the interactions between a pair of agents. The consensus criteria for this
model were considered as well; for more details please see [76] and references therein. Meng
et al. [77] considered an antagonistic dynamic on a network with agents that are separated
into two groups, and with a topology that switched betweenM finite digraphs. Meng studied
the behavior of such systems by lifting restrictions such as the structural balance we saw in
previous models. For further discussion please see Ref. [77].

Antal et al. [78, 79] considers a network with two types of relationship, friendly and an-
tagonistic, in which relationships change in order to turn imbalanced triads into balanced
ones. Refs. [78, 79] are not about opinion dynamics, but perhaps this line of work can be
utilized with opinion dynamics to explore novel questions.

To the best of our knowledge, Ref. [45] is the first to introduce the individuality tendency
to the literature. When the individuality tendency is added to the model of Durkheim, the
update rule becomes:

o
(t+1)
i = o

(t)
i + ξ

(t)
i +

∑
j 6=i(o

(t)
j − o

(t)
i )w

(t)
ij∑

j 6=iw
(t)
ij

(53)

where the influence weights are adaptive and are functions of the opinion difference between
two given agents:

w
(t)
ij = e−

|d(t)
ij
|

γ (54)

where d(t)
ij = o

(t)
i − o

(t)
j . The parameter γ specifies the level of confidence each agent has

in its own opinion. Small γ values imply high confidence in the current opinion and that
agents are influenced mostly by those with whom they hold similar opinions. The adaptive
noise is drawn from a normal distribution with zero mean and its variance is given by
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(ξ(t)
i ∼ N(0, σ

(t)
i )), where

σ
(t)
i = s

∑
j

e−|d
(t)
ij | (55)

The parameter s is used to manipulate the uniqueness tendency in the model, and the
variance σ(t)

i is larger for agents who find themselves similar to a greater number of other
agents.

The Mäs [45] model is motivated by the Durkheim theory of social interactions [80], in
which individuals conform to society’s norms while also tending to be unique and different,
which fosters the co-existence of many different opinions. The homophily assumption of
confidence models is missing here, as an agent is influenced by all other agents. There is
also no repulsion or negative influence. And please note that in Eq. 53, agent i is the only
one updating its opinion, that is, in the simulations a random agent is chosen to update
its opinion. Such updates are neither pairwise nor synchronous. In the Mäs [45] paper,
simulations start from a state of total consensus in which all agents hold the exact same
opinion and in the 2-dimensional space of integrating and disintegrating parameters, (γ, s),
there is an extensive area for which different meta-stable clusters co-exist, while in the other
areas various types of quasi-consensus or total chaos is observed.

The Mäs’s results were obtained from a simulation on a fully connected network to ex-
plain clustering, i.e., to explain the lack of complete consensus at the end of long simulation
runs. The motivation was the need to explain the co-existence of different opinions in a
network where all agents may interact with each other, as opposed to networks that con-
tain artificial constraints on the topology of the network through disconnections or loosely
connected subgraphs [13]. Mäs’s modification more closely approximates connectivity in the
real world, which now includes the internet and social media.

We mentioned before, humans do not possess a sharp decision boundary beyond which
they ignore others, as seen in the DW model. Baccelli et al. [81] tried to address this issue
by incorporating the effect of probabilistic opinion exchange between agents; in other words,
they attempted to smooth out the sharp transition between interacting with and ignoring
others in the DW model. The model includes a random internal thought for each agent. The
random internal thought has an expanding effect. Their modifications included allowing
agents to ignore those whose opinions are close to their own as well as to learn from those
who did not think like them. The update rule for these modifications is given as follows:

o
(t+1)
i =

{
o

(t)
i + ξ

(t)
i + wij(o

(t)
j − o

(t)
i ) if U (t)

i,j = 1,
o

(t)
i + ξ

(t)
i o.w.

,

o
(t+1)
j =

{
o

(t)
j + ξ

(t)
j + wji(o

(t)
i − o

(t)
j ) if U (t)

j,i = 1,
o

(t)
j + ξ

(t)
j o.w.

o
(t+1)
k = o

(t)
k + ξ

(t)
k , k 6∈ {i, j}

(56)

where we must note that:
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• U (t)
i,j ∈ {0, 1} is a random variable indicating whether agent i is influenced by agent j

or not; it is a function of their opinion difference. So, when agent i is not influenced
by agent j, agent j is simply ignored. This is where stochasticity comes in:

p(U
(t)
i,j = 1) = fi,j(|o(t)

j − o
(t)
i |) : R+ → [0, 0.5) (57)

• ξ(t)
k is the noise (“endogenous belief or bias”).

• wij ∈ (0, 0.5] is the influence weight of agent j on agent i.

• All agents subject to Eq. 56, regardless of whether they are participating in an inter-
action or not, will have internal thoughts, i.e., noise that is added to all agents at any
given time t.

• The opinion space in the Eq. (56) is O = R. However, in Ref. [81] the model is
restricted to O = Z, and consequently the update rules given by Eq. (56) are modified
by a rounding method like ceiling or flooring or else.

Baccelli et al. [81] included a stability or weak consensus definition in their paper that
will not be covered here, due to lack of space. (The idea is that “if all agents move to infinity
while remaining close to each other, the society is stable”.) However, their work showed that
it is sufficient to have an agent in the network with high influence on all other agents to reach
a weak consensus. Similarly, it is possible to reach a weak consensus if there is a pathway of
strong influences from one agent to another.

Managing consensus or preventing a community from reaching a consensus has attracted
the attention of researchers. A recent paper [82] with a basis in control theory employs a
novel idea to managing and controlling consensus. The opinions in this paper are in Rn, and
the update rule is given by o(t+1)

i = u
(t)
i +

∑N
j=1wijo

(t)
j , where u(t)

i is the pay-off of a repeated
game between agent i and an external source. The second term, like any other averaging
scheme, made sure the convex hull of states shrank as time passed, or as the authors put
it, the “space averaging process reduces the total squared distance.” The conditions under
which such a system converges to a predefined set (which very well may consist of only one
element) based on the iteration of games with vector pay-offs was addressed in Ref. [82] with
a level of detail that is beyond the scope of this paper.

Another relatively recent work [10] focused on opinion dynamics systems controlled by a
fully-stubborn agent. This paper assumed the influence weights depended on both the cur-
rent state of the agents and time. In this work fully-stubborn agents influence other agents
with an influence function but are not influenced in return. Unlike previous bounded con-
fidence models, which assume the influence stops when the opinion distance is greater than
some threshold, the model in this paper included “other shapes for the dependency between
influence strength and opinion distance.” It also generalized the time-invariant dynamics
associated with fully-stubborn agents to a time-dependent dynamic model. The model con-
verged because it required agents to gather around the fully-stubborn agent in finite time,
and the fully-stubborn then influenced the other agents to adopt the target consensus value.
Another work with a novel idea uses one strategic-agent to maximize the number of agents
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that fall within a given interval is Ref. [83]. Tools such as those presented in these papers
can be utilized to target retail consumers or voters in political elections by both spreading
misinformation and combating it.

In addition to the analytically tractable DeGroot and bounded confidence models we
looked at in detail in this paper, there are simulation driven approachs to understanding
models [84–89]. This allows for more realistic communication patterns (e.g., pairwise inter-
actions) as well as heterogeneous agent behaviors. Agent-based and Monte Carlo simulations
are commonly employed in this case. Agents could have different influence on each other [90],
or different topics may be interrelated [25,91]. In order to introduce a specific kind of agents’
internal thoughts, the tendency for individuality was introduced by [45] in which agents try
to be different when uniformity in a group increases, and later this idea was applied with
agents’ having a memory [92], where their uniqueness tends to be more in the opposite
direction of their community’s movement direction.

There are also analytical approaches for studying opinion formation that are based on
well-known Boltzmann-type equations of dilute gases [93–98]. The advantage of this ap-
proach is that well established methods from statistical physics can be used to study the
evolution of densities/distribution of agents/opinion in regions of opinion space in the time
limit. However, some aspects of physical systems are removed when applied to agents’ in-
teractions. Some of the simplifications, for example, are: interaction among agents could
happen with very few agents whereas for molecules of gases to interact they have to have
high density, or, in opinion dynamics, limitations are imposed around opinion space bound-
aries [99] whereas gas molecules interact also with the walls of the environment they live in.
The application of integro-differential equations of Boltzmann type are not limited to opinion
dynamics, they are also applied to other areas such as economics and wealth distribution for
which a gentle introduction source is [100]. A relatively recent work in this area [101] shows
how nonlinear dynamics of diffusion and anti-diffusion can create clusters, where formation
of clusters and their attributes are one of the challenges of the field as of today.

Consensus formation has of course attracted quite a bit of attention due to its practical
impact. Given the invention of the Internet, social media and such, the connectivity among
people has increased and we observe polarizations frequently. Hence, consensus might not
be the most interesting limit state that systems may reach after all.

If a decision is to be made by a group of people, the majority vote models are more
suitable where consensus may not occur, but a decision is made. Research about group de-
cision making has also recently received attention [102, 103], with focus on consensus [104],
decision making on the web [105], and with presence of non-cooperative agents [106], which
the aformentioned subject is not studied much. Please take a look at Ref. [107] for a recent
survey of research about decision making.

In some models [4,39,69,72,92,108] agents do not simply ignore other agents with opinions
that are too far from their own. In some works [108–111] evolving networks are considered
and in others [15] evolving influences. Another interesting update rule, in Ref. [108], is based
on the difference of opinion of a given agent and all of its connection, however, the update
takes place, unlike bounded confidence model, when the difference is larger than a threshold
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δ > 0, due to social pressure. It is unlike most developed models, and it may intuitively
seem agents will move towards consensus, however, in fact the model allows existence of a
spectrum of opinions, (o− δ

2
, o+ δ

2
).

A major contributor to the field is Galam whose work goes back to 1982 [112] and
includes binary opinion dynamics, group decision making and more. For example, the idea
of inflexible stubborn agents in binary opinion dynamics was introduced in Ref. [113]. We
refer the reader to a survey of his works [114] and his book [115] to learn more about opinion
dynamics from a sociophysics perspective.

Galam [116] and Biswas et al. [117] both attempted, with different approaches, to explain
Trump’s victory in the US presidential election. Moreover, Galam predicted Trump will win
provided he kept his shocking and paradoxical behavior (The arXiv version was put before
the 2016 Nov election).

While in this work we are focused on real-valued, continuous opinion space, there are bi-
nary version of the model [118,119] for which opinions are restricted to boolean values. Some
of these boolean models are inspired by spin systems (e.g., the Ising model) commonly stud-
ied in statistical physics [120–122]. The Ising model is a simplified model of ferromagnetism
in which spins are restricted to two orientations and are influenced by their neighbors on a
grid. In between continuous and boolean valued opinions are models in which are discrete
but more than two choices are available, for example a recent model is suggested by Bolzern
et al. [123] which is a Markov chain model. Another model proposed by Martins [124] is
defined for a continuous opinion space but agents take discrete actions.

5.2 New Questions

We have only covered part of the work in the area of opinion dynamics, but even if all of
the work is considered, much opportunity remains for exploration and creativity. Here are a
few questions and directions that seem interesting that, to our knowledge, are mostly open
at this time.

1. There is no work that we are aware of in which higher order interactions are considered,
where, for example, collections or cliques of k people (k > 2) are modeled as interacting
in a way that is more than just k(k−1)

2
simultaneous pairwise interactions, even though

some interactions are not reducible to a bunch of pairwise interactions.

2. Little work has been done on the coupling of topics to each other, even though there
is the work on topic sequences. A reasonable approach might consider the topics
themselves to form a graph or network, with nodes that are topics and edges and
cliques that represent interactions. One would then have an opinion space for each
agent that is a network of topics. The interaction dynamics between the topic networks
for individual agents are mediated by agent-to-agent interactions. While this is much
more complicated, it is also much more realistic and still much simpler than the true
reality we are trying to model and understand.
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3. There is little work we are aware of that explicitly tries to model the effects of time-
to-think and the evolution of opinions outside of an interaction. This is related to the
effect that deep reading has on people who take the time to think (see Ref. [81] for
work that considers opinion-influencing noise occurring outside of interactions, which
can be thought of as the effects of internal thoughts. We briefly mentioned it in Sec. 5.1
where the update rule is given by Eq. 56)

4. The evolution of the connections in the network of agents has been considered, but as
far as we know, it has not included geophysical movements, normal life cycle changes,
and the economics of connections. There is also the issue of trust evolution due to so-
cially/emotionally impactful interactions. While some of these events would be tightly
coupled in time with changes in opinions, others would be hard to tie to immediate
opinion changes.

5. Consensus in continuous opinion dynamics is usually studied as time goes to infinity,
and humans (or their social groups) do not live forever. Is there a better way to define
equilibrium given the finite number of interactions that are physically possible in a
fixed time period or lifespan?
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