
Week 2 - Part 1 
EDA 
In this lesson we will talk about the very first steps a good data 
scientist takes when he is given a new data set. Mainly, exploratory 
data analysis or EDA in short. By the end of this lesson, you will know, 
what are the most important things from data understanding and 
exploration prospective we need to pay attention to. This knowledge is 
required to build good models and achieve high places on the leader 
board. We will first discuss 
what exp lo ra tory data 
analysis is and why we need 
it. We will then go through 
important parts of EDA 
process and see examples of 
what we can discover during 
EDA.  

Next we will take a look at the tools we have to perform exploration. 
What plots to draw and what functions from pandas and matplotlib 
libraries can be useful for us. We will also briefly discuss a very basic 
data set cleaning process that is convenient to perform while exploring 
the data. And finally we'll go through exploration process for the 
Springleaf competition hosted on Kaggle some time ago.  

What is EDA? It's basically a process of looking into the data, 
understanding it and getting comfortable with it.  

Getting comfortable with a task, probably always the first thing you 
do. To solve a problem, you need to understand a problem, and to 
know what you are given to solve. In data science, complete data 
understanding is required to generate powerful features and to build 
accurate models. In fact while you explore the data, you build an 
intuition about it. And when the data is intuitive for you, you can 
generate hypothesis about possible new features and eventually find 
some insights in the data which in turn can lead to a better score. We 
will see the example of what EDA can give us later in this lesson.  
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Well, one may argue that there is another way to go. Read the data 
from the hard drive, never look at it and feed the classifier 
immediately.They use some pretty advanced modeling techniques, like 
mixing, stacking, and eventually 
get a pretty good score on the 
leaderboard . A l though th i s 
approach sometimes works, it 
cannot take you to the very top 
positions and let you win. Top 
solutions always use advanced 
and aggressive modeling. But 
usually they have something more 
than that. They incorporated 
insights from the data, and to find 
those insights, they did a careful 
EDA.  

While we need to admit the raw computations where all you can do 
is modeling and EDA will not help you to build a better model. It is 
usually the case when the data is anonymized, encrypted, pre-
processed, and obfuscated. But look it will any way need to perform 
EDA to realize that this is the case and you better spend more time on 
modeling and make a server busy for a month.  

One of the main EDA tools is 
Visualization. When we visualize the 
data, we immediate ly see the 
patterns. And with this, ask ourselves, 
what are those patterns? Why do we 
see them? And finally, how do we use 
those patters to build a better 
model? It also can be another way 
around. Maybe we come up with a 
particular hypothesis about the 
data. What do we do? We test it by 
making a visualization.  

In one of the next videos, we'll talk about the main visualization tools 
we can use for exploration.  
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Just as a motivation example, I want to tell you about the competition, 
alexander D'yakonov, a former 
top one at Kagel took part 
s o m e t i m e a g o . T h e 
interesting thing about this 
competition is that you do 
not need to do any modeling, 
if you understood your data 
well. In that competition, the 
objective was to predict whether a person will use the promo that a 
company offers him. So each row correspond to a particular promo 
received by a person. There are features that describe the person, 
for example his age, sex, is he married or not and so on. And there 
are features that describe the promo, the target is 0 or 1, will he use 
the promo or not.  

But, among all the features there were two especially interesting. The 
first one is, the number of promos sent by the person before. And the 
second is the number of promos the person had used before.  

So let's take a particular user, say with index 13, and sort the rows by 
number of promos sent column.
  
And now let's take a look at the 
d i f ference at co lumn the 
n u m b e r o f u s e d p r o m o s 
between two consecut ive 
rows. It is written here in diff 
column.  
And look, the values in diff 
column in most cases equal the 
target values.  

And in fact, there is no magic. Just think about the meaning of the 
columns. For example, for the second row we see that the person used 
one promo already but he was sent only one before that time. And 
that is why we know that he used the first promo and thus we have an 
answer for the first row.  
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In general, if before the current promo the person used n promos 
and before the next promo he used that, we know that he used n + 1 
promos then we realize that he used the current promo. And so the 
answer is 1. If we know that he used n promos before the next 
promo, exactly as before the current promo, then obviously he did not 
use the current promo and the answer is 0. Well, it's not clear what to 
do with the last row for every user, or when we have missing rows, but 
you see the point. We didn't even run the classifier, and we have 80% 
accuracy already. This would not be possible if we didn't do an EDA 
and didn't look into the data.  

Also as a remark, I should say that the presented method 
works because of mistake made by the organizers during data 
preparation. These mistakes are called leaks, and in competitions we 
are usually allowed to exploit them. We'll see more of these examples 
later in this course.  

So in this video we discussed the main reasons for performing an 
EDA. That is to get comfortable with the data and to find insights in 
magic features.  

We also saw an example where EDA and the data understanding was 
important to get a better score.  

And finally, the point to take away. When you start a competition, you 
better start with EDA, and not with hardcore modeling.  

Building Intuition 
In this video, we'll go through and break down several important steps 
namely, the first, getting domain knowledge step, second, checking if 
data is intuitive, and finally, understanding how the data was 
generated. So let's start with the 
first step, getting the domain 
knowledge. If we take a look at 
the computations hosted in the 
Kaggle, well, you'll notice, they 
are rather diverse. Sometimes, 
we need to detect threads on three dimensional body scans, or predict 
real estate price, or classify satellite images. Computation can be on a 
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very specific topic which we know almost nothing about, that is, we 
don't have a domain knowledge. Usually, we don't need to go too deep 
inside the field but it's preferable to understand what our aim is, what 
data we have, and how people usually tackle this kind of problems to 
build a baseline. So, our first 
step should probably be 
s e a r c h i n g f o r t h e 
t op i c , Goog l i ng w i t h i n 
Wikipedia, and making sure 
we understand the data. For 
example, let's say we start a 
new computation in which 
w e n e e d t o p r e d i c t 
advertisers cost. Our first step is to realize that the competition is 
about web advertisement. By looking and searching for the column 
names, using any search engine, we understand that the data was 
exported from Google AdWords system. And after reading several 
articles about Google AdWords, we get the meaning of the columns. 
We now know that impressions column contained the number of times 
a particular ad appeared before users, and clicks column is how many 
times the ad was clicked by the users, and of course, the number of 
clicks should be less or equal than the number of impression. In this 
video, we'll not go much further into the details about this data set, 
but you can open the supplementary reading material for a more 
detailed exploration. After we've learned some domain knowledge, it is 
necessary to check if the 
values in the data set are 
intuitive, and agree with our 
d oma i n know l edge . Fo r 
example, if there is a column 
with age data, we should 
expect the values rarely to be 
larger than 100. And for sure, 
no one ever lived more than 
200 years. So, the values 
should be smaller than 200. 
But for some reason, we find 
this super huge value 336. 
Most probably, is just a typo but it should be 36 or 33, and the best we 
can do is manually correct it. But the other possibility is that its not a 
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human age, but some alien's age for which it's totally normal to live 
more than 300 years. To check that, we should probably read the data 
description one more time, ask on forums. Maybe the data is totally 
correct, and then we just misinterpret it. Now, take a look at our 
Google AdWords data set. We understood that the values in the clicks 
variable should be less 
or equal than the values 
i n i m p r e s s i o n s 
column. And in our case, 
in the first row, we see 
zero impressions and 
t h r e e c l i c k e r. T h a t 
s ounds l i ke a bug , 
right? In fact, it probably 
is, but differently to the example of person's age, it could be rather a 
regular error made by either data exporting script or another kind of 
algorithm. That is, the errors were made not at random, but there is 
some kind of logic why there is an error in that particular place. It 
means that these mistakes can be used to get a better score. For 
example, in our case, we could create a new feature, is_incorrect, and 
mark all the rows that have errors. Probably, our models will find this 
feature helpful. It is also very important to understand how the data 
was generated. What was the algorithm for sampling objects from the 
database? Maybe, the host sample get objects at random, or they 
over-sample a particular class, that is, they generated more examples 
of that class. For example, to make the dataset more class 
balanced. In fact, only if you know how the data was generated, you 
can set up a proper validation scheme for models. Coming up with a 
correct validation pipeline is crucial, and we will discuss it later in this 
course. So, what can we possibly find out about generation 
processes? For example, we could find out the train and test set were 
generated with different algorithms. And if the test set is different from 
the train set, we cannot use part of the train set as a validation 
set, because this part will not be representative of test set. And so, we 
cannot evaluate our models using it. So once again, to set up a correct 
validation, we need to know underlying data generation processes. In 
the ad competition, we discussed before, there were all the symptoms 
of different train/test sampling. Improving the model on validation 
set didn't result into improved public leader-board score. And more, 
the leader-board score was unexpectedly higher than the validation 
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score. I was also visualizing various things while trying to understand 
what's happening, and every time, the plots for the train set were 
much different to the test set plots. This also could not happen if the 
train and test set were similar. And finally, it was suspicious that 
although the train period was more than ten times larger than the test 
period, the train set had much fewer 
rows. It was not straightforward, but 
this triangle on the left figure was the 
clue for me, and the puzzle was 
solved. I've adjusted the train set to 
match test set. The validation score 
became reliable, and the modeling 
could be commenced. You can find the 
e n t i r e t a s k d e s c r i p t i o n a n d 
investigation in the written materials. 
So, in this video, we've discussed several important exploratory steps. 
First, we need to get domain knowledge about the task as it helps to 
better understand the problem and the data. Next, we need to check if 
the data is intuitive, and agrees with our domain knowledge. And 
finally, it is necessary to understand how the data was generated by 
organizers because otherwise, we cannot establish a proper validation 
for our models. 

J u p y t e r 
NoetBook 
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Exploring Anonymized Data 
In the previous video, we were working with the data for which we had a nice 
description. That is, we knew what the features were, and the data was given us 
as these without severe modifications. But, it's not always the case. The data can 
be anonymized, and obfuscated.  

In this video, we'll first discuss what is anonymized data, and why organizers 
decide to anonymize their data.  

And next, we will see what we as competitors can do about it. Sometimes we can 
decode the data, or if we can not we can try to guess, what is the type of 
feature. So, let's get to the discussion.  

Sometimes the organizers really want some information to be reviewed. So, they 
make an effort to export competition data, in a way one couldn't get while you're 
out of it. Yet all the features 
a r e p r e s e r v e d , a n d 
machinery model will be 
able to do it's job. For 
example, i f a company 
wants someone to classify 
its document, but doesn't 
w a n t t o r e v e a l t h e 
document's content. It can 
r e p l a c e a l l t h e w o r d 
occurrences with hash values of those words, like in the example you see here.  

In fact, it will not change a thing for 
a model based on bags of words.  

I will refer to Anonymized data as to 
a n y d a t a w h i c h o r g a n i z e r s 
intentionally changed. Although it is 
not completely correct, I will use 
this wording for any type of 
changes.  
In competitions with tabular data, 
co mp a n i e s ca n t r y t o h i d e 
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information each column stores. Take a look at this data set. First, we don't have 
any meaningful names for the features. The names are replaced with some 
dummies, and we see some hash like values in columns x1 and x6. Most likely, 
organizers decided to hash some sensitive data. There are several things we can 
do while exploring the data in this case.  

First, we can try to decode or de-anonymize the data, in a legal way of 
course. That is, we can try to guess true meaning of the features. Sometimes de-
anonymization is not possible, but what we almost surely can do, is to guess the 
type of the features, separating them into numeric, categorical, and so on.  

Then, we can try to find how features relate to each other. That can be a specific 
relation between a pair of features, or we can try to figure out if the features are 
grouped in some way.  

In this video we will concentrate on the first problem. In the next video we will 
discuss visualization tools, that we can use both for exploring individual features, 
and feature relations.  

    Jupyter NoteBook 

Let's now get to an example how it was possible to decode the meaning of the 
feature in one local competition I took part. I want to tell you about a competition I 
took part. It was a local competition, and organizers literally didn't give 
competitors any information about a dataset. They just put the link to download 
data on the competition page, and nothing else. Let's read the data first, and 
basically what we see here is that the data is anonymized. The column names 
are like x something, and the values are hashes, and then the rest are numeric in 
here. But, well we don't know what they mean at all, and basically we don't what 
we are to predict. We only know that it is a multi-class classification task, and we 
have four labels.  

So, as long as we don't know what the data is, we can probably build a quick 
baseline. Let's import Random Forest Classifier.  

Yeah, of course we need to drop target label from our data frame, as it is 
included in there. We'll fill null values with minus 999, and let's encode all the 
categorical features, that we can find by looking at the types. Property of our data 
frame. We will encode them with Label Encoder, and it is easier to do with 
function factorize from Pandas. Let's feed to Random Forest Classifier on our 
data.  

�  of �9 36

https://hub.coursera-notebooks.org/user/vksdjvctrbvqaattazenmx/notebooks/readonly/reading_materials/EDA_video3_screencast.ipynb


And let's plot the feature importance's, and what we see here is that feature X8 
looks like an interesting one. We should probably investigate it a little bit 
deeper. If we take the feature X8, and print it's mean, and estimate the 
value. They turn out to be quite close to 0, and 1 respectively, and  

it looks like this feature was tendered skilled by the organizers. And we don't see 
here exactly 0, and exactly 1, because probably training test was concatenated 
when on the latest scale. If we concatenate training test, then the mean will be 
exactly 0, and the std will be exactly 1.  

Okay, so let's also see are there any other repeated values in these 
features? We can do it with a value counts function. Let's print first 15 rows of 
value counts out.  

And we can see that there are a lot of repeated values, they repeated a thousand 
times.  

All right, so we now know that this feature was standard scaled. Probably, we can 
try to scale it back. The original feature was multiplied by a number, and was 
shifted by a number.  

All we need to do is to find the shooting parameter, and the scaling 
parameter. But how do we do that, and it is really possible? Let's take unique 
values of the feature, and sort them.  

And let's print the difference between two consecutive numbers, in this sorted 
array. And look, it looks like the values are the same all the time. The distance 
between two consecutive unique values in this feature, was the same in the 
original data to. It was probably not 0.043 something, it was who knows, it could 
be 9 or 11 or 11.7, but it was the same between all the pairs, so assume that it 
was 1 because, well, 1 looks like a natural choice. Let's divide our feature by this 
number 0.043 something, and if we do it, yes, we see that the differences 
become rather close to 1, they are not 1, only because of some numeric errors.  

So yes, if we divide our feature by this value, this is what you get. All right, so 
what else do we see here. We see that each number, it ends with the same 
values.  

Each positive number ends with this kind of value, and each negative with this, 
look. It looks like this fractional part was a part of the shifting parameter, let's just 
subtract it. And in fact if we subtract it, the data looks like an integers, 
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actually. Like it was integer data, but again because of numeric errors, we see 
some weird numbers in here.  

Let's round the numbers, and that is what we get. This is actually on the first ten 
rows, not the whole feature. Okay, so what's next? What did we do so far? We 
found the scaling parameter, probably we were right, because the numbers 
became integers, and it's a good sign.  

We could be not right, because who knows, the scaling parameter could be 10 
or 2 or again 11 and still the numbers will be integers. But, 1 looks like a good 
match.  

It couldn't be as random, I guess. But, how can we find the shifting parameter? 
We found only fractional part, can we find the other, and can we find the integer 
part, I mean?  
It's actually a hard question, because while you have a bunch of numbers in 
here, and you can probably build a hypothesis. It could be something, and the 
regular values for this something is like that, and we could probably scale it, shift 
it by this number. But it could be only an approximation, and not a hypothesis, 
and so our journey could really end up in here. But I was really lucky, and I will 
show it to you, so if you take your x8. I mean our feature, and print value counts, 
what we will see, we will this number 11, 17, 18, something.  

And then if we scroll down we will see this, -1968, and it definitely looks like year 
a of birth, right? Immediately I have a hypothesis, that this could be a text box 
where a person should enter his year of birth.  

And while most of the people really enter their year of birth, but one person 
entered zero. Or system automatically entered 0, when something wrong 
happened.  

And wow, that isn't the key. If we assume the value was originally 0, then the 
shifting parameter is exactly 9068, let's try it.  

Let's add 9068 to our data, and see the values. Again we will use value counts 
function, and we will sort sorted values. This is the minimum of the values, and in 
fact you see the minimum is 0, and all the values are not negative, and it looks 
really plausible.  

Take a look, 999, it's probably what people love to enter when they're asked to 
enter something, or this, 1899. It could be a default value for this textbook, it 
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occurred so many times. And then we see some weird values in here. People just 
put them at random. And then, we see some kind of distribution over the dates.  

That are plausible for people who live now, like 1980.  

Well maybe 1938, I'm not sure about this, and yes of course we see some days 
from the future, but for sure it looks like a year of birth, right?  

Well the question, how can we use this information for the competition?  

Well again for linear models, you probably could make a new feature like age 
group, or something like that. But In this particular competition,  

it was no way to use this for, to use this knowledge. But, it was really fun to 
investigate. I hope you liked the example, but usually is really hard to recognize 
anything sensible like a year of birth anonymous features. The best we can do is 
to recognize the type of the feature. Is it categorical, numeric, text, or something 
else?  

Last week we saw that each 
data type should be treated 
differently, and more treatment 
depends on the model we want 
to use.  
That is why to make a stronger 
model, we should know what 
data we are working with. Even 
though we cannot understand 
w h a t t h e f e a t u r e s a r e 
about, we should at least 
detect the types of variables in 
the data. Take a look at this example, we don't have any meaningful companies, 
but still we can deduce what the feature types are. So, x1 looks like text or 
physical recorded, x2 and x3 are binary,  

x4 is numeric, x5 is either categorical or numeric. And more, if it's numeric it 
could be something like event calendars, because the values are integers.  

When the number of columns in data set is small, like in our example, we can 
just bring the table, and manually sort the types out. But, what if there are 
thousand of features in the data set?  
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Very useful functions to facilitate our exploration, function d types from pandas 
guesses the types for each column in the data frame. Usually it groups all the 
columns into three categories, flawed, integer, and so called object type. If dtype 
function assigned flawed type to a feature, this feature is most likely to be 
numeric.  

Integer typed features can be either binary encoded with a zero or one. Event 
counters, or even categorical, encoded with the label encoder.  

Sometimes this function returns a type named object. And it's the most 
problematic, it can be anything, even an irregular numeric feature with missing 
values filled with some text.  

Try it on your data, and also check out a very similar in full function from Pandas.  

To deal with object types, it is useful to print the data and literally look at it. It is 
useful to check unique values with value counts function, and nulls location with 
isnull function at times.  

In this lesson, we were discussing two things we can do with anonymized 
features. We saw that sometimes, it's possible to decode features, find out what 
this feature really means.  

It doesn't matter if we understand the meaning of the features or not, we should 
guess the feature types, in order to pre-process features accordingly to the type 
we have, and selected model class. In the next video, we'll see a lot of colorful 
plots, and talk about visualization, and other tools for exploratory data analysis 
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Visualization 
In the previous video, we've tried to 
decode anonymized features and guess 
their types. In fact, we want to do more. 
We want to generate new features and to 
find insights in a data. And in this lesson, 
we will talk about various visualizations 
that can help us with it. We will first see 
what plots we can draw to explore 
individual features, and then we will get 
to exploration of feature relations. We'll explore pairs first and then 
we’ll try to find feature groups in a dataset. There is no recipe how you 
find interesting things in the data. You should just spend some time 
looking closely at the data table, printing 
it, and examining. If we found something 
interesting, we then can take a closer 
look. So, EDA is kind of an art, but we 
have a bunch of tools for it which we'll 
discuss right now. The first, we can build 
histograms. Note that histograms may be 
misleading in some cases, so try to vary 
its number of bins when using it. Also, 
know that it aggregates in the data, so 
we cannot see, for example, if all the 
values are unique or there are a lot of 
repeated values. Let's see in other 
example. The first thing that I want to 
illustrate here is that histograms can 
confuse. Looking at this histogram, we 
could probably think that there are a lot 
of zero values in this feature. But in fact, 
if we take logarithm of the values and 
build histogram again, we'll clearly see 
that distribution is non-degenerate and there are many more distinct 
values than one. So my point is never make a conclusion based on a 
single plot. If you have a hypothesis, try to make several different 
plots to prove it. The second interesting thing here is that peak. What 
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is it? It turns out that the peak is located exactly at the mean value of 
this feature. Seems like organizers filled the missing values with the 
mean values for us. So, now we understand that values were originally 
missing. How can we use this information? We can replace the missing 
values we found with NaNs, nulls again. For example, XGBoost has a 
special algorithm that can fill missing values on its own and so, maybe 
XGBoost will benefit from explicit missing values. Or we can fill the 
missing values with something other than feature mean, for example, 
with -999. Or we can generate a new feature which will indicate that 
the value was missing. This can be particularly useful for linear 
models.  

We can also build the plot where on X 
axis, we have a row index, and on the Y 
axis, we have feature values. It is 
convenient not to connect points 
with line segments but only draw them 
with circles. Now, if we observe 
horizontal lines on this kind of plot, we 
understand there are a lot of repeated 
values in this feature. Also, note the 
randomness over the indices. That is, 
we see some horizontal patterns but no vertical ones. It means that 
the data is properly shuffled.  

We can also color code the points 
according to their labels. Here, we see 
that the feature is quite good as it 
presumably g ives a n ice c lass 
separation. And also, we clearly see 
that the data is not shuffled here. It is, 
in fact, sorted by class label.  
 
It is useful to examine statistics with 
Pandas' describe function. You can see 
examples of its output on the screenshot. It 
gives you information about mean, standard 
deviation, and several percentiles of the 
feature distribution. Of course, you can 
manually compute those statistics.  
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And finally, as we already discussed in 
t h e p r e v i o u s v i d e o , t h e r e i s 
value_counts function to examine the 
number of occurrences of distinct 
feature values, and a function 
isnull, which helps to find the missing 
values in the data. For example, you 
can visualize null patterns in the data 
as on the picture you see.  

So, here's the ful l l ist of functions we've 
discussed. Make sure you remember each of them.  

To this end, we've discussed visualizations for 
individual features. And now, let's get to the next 
topic of our discussion, exploration of feature 
relations. It turns out that sometimes, it's 
hard to make conclusions looking at one 
feature at a time. So let's look at the 
pairs. The best two here is a scatter plot. 
With it, we can draw one sequence of 
values versus another one.  

And usually, we plot one feature versus 
another feature. So each point on the 
figure correspond to an object with the 
feature values shown by points position. If 
it's a classification task, it's convenient to 
color code the points with their labels like on this picture. The color 
indicates the class of the object. For regression, the heat map light 
coloring can be used, too. Or alternatively, the target value can be 
visualized by point size. We can effectively use scatter plots to check 
if the data distribution in the train and test sets are the same.  

In this example, the red points correspond to 
class zero, and the blue points to class 
one. And on top of red and blue points, we see 
gray points. They correspond to test set. We 
don't have labels for the test set, that is why 
they are gray. And we clearly see that the red 
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points are mixed with part of the gray ones, and that that is good 
actually. But other gray points are located in the region where we don't 
have any training data, and that is bad. If you see some kind of 
discrepancy between colored and gray points distribution, you should 
probably stop and think if you're doing it right. It can be just a bug in 
the code, or it can be completely overfitted feature, or something else 
that is for sure not healthy.  

Now, take a look at this scatter plot. Say, 
we plot feature X1 versus feature 
X2. What can we say about their 
relation? The right answer is X2 is less or 
equal than one_minus_X1. Just realize 
that the equation for the diagonal line is 
X1 + X2 = 1, and for all the points below 
the line, X2 is less or equal than 
one_minus_X1. So, suppose we found 
this relation between two features, how 
do we use this fact? Of course, it 
depends, but at least there are some 
obvious features to generate. For tree-
based models, we can create a new features like the difference or ratio 
between X1 and X2.  

Now, take a look at this scatter plot. It's 
hard to say what is the true relation 
between the features, but after all, our goal 
is not to decode the data here but to 
generate new features and get a better 
score. And this plot gives us an idea how to 
generate the features out of these two 
features. We see several triangles on the 
picture, so we could probably make a 
feature to each triangle a given point 
belongs, and hope that this feature will 
help.  

When you have a small number of features, you can plot all the 
pairwise scatter plots at once using scatter matrix function from 
Pandas. It's also nice to have histogram and scatter plot before the 
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eyes at the same time as scatter plot gives 
you ve r y vague i n f o rma t i on abou t 
densities, while histograms do not show 
feature interactions.  

We can also compute some kind of distance 
between the columns of our feature table and 
store them into a matrix of size number of 
features by a number of features. For 
example, we can compute correlation between the counts. It's the 
most common type of matrices people build, correlation metric. But we 
can compute other things than correlation. For example, how many 
times one feature is larger than the other? I mean, how many rows 
are there such that the value of the first feature is larger than the 
value of the second one? Or another example, we can compute how 
many distinct combinations the features 
have in the dataset. With such custom 
functions, we should build the matrix 
manually, and we can use matshow 
function from Matplotlib to visualize it like 
on the slide you see.  

If the matrix looks like a total mess like in 
here, we can run some kind of clustering 
like K-means clustering on the rows and 
columns of this matrix and reorder the 
features. This one looks better, isn't it?  

We actually came to the last topic of our 
discussion, feature groups. And it's what 
we see here. There are groups of very 
similar features, and usually, it's a good 
idea to generate new features based on 
the groups.  
Again, it depends, but maybe some 
statistics could collated over the group will work fine as features. 
Another visualization that helps to find feature groups is the following: 
We calculate the statistics of each feature, for example, mean value, 
and then plot it against column index. This plot can look quite random 
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if the columns are shuffled. So, what if 
we sorted the columns based on this 
statistic? Feature mean, in this case. It 
looks like it worked out. We clearly see 
the groups here. So, now we can take a 
closer look to each group and use the 
imagination to generate new features.  
 
So, finally in this video, we we're talking 
about the tools and functions that help us 
with data exploration.  
For example, to explore features one by 
one, we can use histograms, plots, and 
we can also examine statistics.  
To explore a relation between the 
features, the best tool is a scatter plot. 
Scatter matrix combines several scatter 
plots and histograms on one figure. 
Correlation plot is useful to understand 
how similar the features are. And if we 
reorder the columns and rows of the 
correlation matrix, we'll probably find 
feature groups. And feature groups was 
the last topic we discussed in this 
lesson. We also saw a plot of sorted 
feature statistics and how it can reveal as 
feature groups. Well, of course, we've 
discussed only a fraction of helpful plots 
there are. With practice, you will develop 
and find your own tools for further 
exploration. 
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Data Cleaning 
Here we discuss a little bit of dataset cleaning and see how to check if 
dataset is shuffled. It is important to understand that the competition 
data can be only a part of the 
data organizers have. The 
organizers could give us a 
fraction of objects they have or a 
fraction of features. And that is 
why we can have some issues 
with the data. For example, we 
can encounter a feature which 
takes the same value for every 
object in both train and test set. 
This could be due to the sampling procedure. For example, the future 
is a year, and the organizers exported us only one year of data. So in 
the original data that the organizers have, this future is not constant, 
but in the competition data it is constant. And obviously, it is not 
useful for the models and just occupy some memory. So we are about 
to remove such constant features. In this example dataset feature zero 
is constant. It can be the case that the feature is constant on the train 
set but how is different values on the test set. Again, it is better to 
remove such features completely since it is constant during training. In 
our dataset feature is f1.  
 
What is the problem, actually? For 
example, my new model can assign 
some weight to this future, so this 
future wi l l be a part of the 
prediction formula, and this formula 
will be completely unreliable for the 
objects with the new values of that 
feature. For example, for the last 
row in our data set, G row. Even if categorical feature is not constant 
on the train path but there were values that present only in the test 
set, we need to handle this situation properly. We need to decide, do 
these new values matter much or not? For example, we can simulate 
this situation with a validation set and compare the quality of the 
predictions on the objects with the seen feature values and objects 
with the new feature values. Maybe we will decide to remove the 
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feature or maybe we will decide to create a separate model for the 
object with a new feature values.  

Sometimes there are duplicated numerical features that these 
two columns are completely identical. In our example data set, these 
columns f2 and f3. Obviously, we 
should leave only one of those two 
features since the other one will not 
give any new information to the 
model and will only slow down 
training. Fro numerical features, it's 
easy to check if two columns are the 
same. We just can compare them 
element wise.  

We can a l so have dup l i ca ted 
categorical features. The problem is 
that the features can be identical but 
their levels have different names. 
That is it can be possible to rename 
levels of one of the features and two 
columns will become identical. For 
example features f4 and f5. If we 
rename levels of the feature f5, C to 
A, A to B, and B to C. The result will look exactly as feature f4. But 
how do we find such duplicated features? Fortunately, it's quite easy, it 
will take us only one more line of code to find them. We need to label 
encode all the categorical features first, and then compare them as if 
they were numbers. The most important part here is label encoding. 
We need to do it right. We need to encode the features from top to 
bottom so that the first unique value we see gets label 1, the second 
gets 2 and so on. For example for feature f4, we will encode A with 1, 
B with 2 and C with 3. Now feature f5 will encode it differently C will 
be 1, A will be 2 and B will be 3. But after such encodings columns f4 
and f5 turn out to be identical and we can remove one of them.  

Another important thing to check is if there are any duplicated rows in 
the train and test. If there are a lot of duplicated rows that also have 
different target, it can be a sign the competition will be more like a 
roulette, and our validation will be different to public leader board 
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score, and private standing will be rather random. Another possibility, 
duplicated rows can just be the result of a mistake. There was a 
competition where one row was repeated 100,000 times in the training 
data set. I'm not sure if it was intentional or not, but it was 
necessary to remove those duplicated rows to have a high score on the 
test set. Anyway, it's better to 
explain it to ourselves why do we 
observe such duplicated rows? 
T h i s i s a p a r t o f d a t a 
understanding in fact.  
We should also check if train and 
t e s t h a v e c o m m o n r o w s . 
Some t imes i t c an t e l l u s 
someth ing about da ta se t 
generation process. And again we 
should probably think what could be the reason for those duplicates? 
Another thing we can do, we can set labels manually for the test rows 
that are present in the train set.  
Finally, it is very useful to check that the data set is shuffled, because 
if it is not then, there is a high chance to find data leakage. We’ll have 
a special topic about date leakages later, but for now we'll just discuss 
that the data is shuffled.  

What we can do is we can plot a feature or target vector versus row 
index. We can optionally smooth the values using running average. On 
this slide rolling target value from Quora Question Pairs competition is 
plotted while mean target value is 
shown with dashed blue line.  
If the data was shuffled properly 
we would expect some kind of 
oscillation of the target values 
around the mean target value. But 
in this case, it looks like the end of 
the train set is much different to 
the start, and we have some 
patterns. Maybe the information 
from this particular plot will not 
advance our model. But once again, we should find an explanation for 
all extraordinary things we observe. Maybe eventually, we will find 
something that will lead us to the first place. Finally, I want to 
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encourage you one more time to 
visualize every possible thing in a 
dataset. Visualizations will lead you to 
magic features.  

Here's a whole list of topics we've 
discussed. You can pause this video 
and try to remember what we were 
talking about and where. 
 

SpringLeaf Competition I 
(NoteBook) 

 So in this video, I will go through Springleaf data, it was a competition 
on Kaggle. In that competition, the competitors were to predict 
whether a client will respond to direct mail offer provided by 
Springleaf. So presumably, we'll have some features about 
client, some features about offer, and we'll need to predict 1 if he will 
respond and 0 if he will not, so let's start. We'll first import some 
libraries in here, define some functions, it's not very interesting. And 
finally, let's load the data and train our test one, and do a little bit of 
data overview. So the first thing we want to know about our data is 
the shapes of data tables, so let's bring the train shape, and test that 
test shape. What we see here, we have one 150,000 objects, both in 
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train and test sets, and about 2000 features in both train and test. And 
what we see more than, we have one more feature in train, and as 
humans, just target can continue to move the train. So we should just 
keep it in mind and be careful, and drop this column when we feed our 
models.  
1:23 
So let's examine training and test, so let's use this function had to 
print several rows of both. We see here we have ID column, and 
what's interesting here is that I see in training we have values 2, 4, 5, 
7, and in test we have 1, 3, 6, 9. And it seems like they are not 
overlapping, and I suppose the generation process was as 
following. So the organizers created a huge data set with 300,000 
rules, and then they sampled at random, rows for the train and for the 
test. And that is basically how we get this train and test, and we have 
this column IG, it is row index in this original huge file. Then we have 
something categorical, then something numeric, numeric again, 
categorical, then something that can be numeric or binary. But you see 
has decimal part, so I don't know why, then some very strange values 
in here, and again, something categorical. And actually, we have a lot 
of in between, and yeah, we have target as the last column of the train 
set, so let's move on. Probably another thing we want to check is 
whether we have not a numbers in our data set, like nonce values, and 
we can do it in several ways. And one way we, let's compute how 
many NaNs are there for each object, for each row. So this is actually 
what we do here, and we print only the values for the first 15 
rows. And so the row 0 has 25 NaNs, row 1 has 19 NaN,, and so on, 
but what's interesting here, six rows have 24 NaNs. It doesn't look like 
we got it in random, it's really unlikely to have these at random. So 
my hypothesis could be that the row order has some structure, so the 
rows are not shuffled, and that is why we have this kind of 
pattern. And that means that we probably could use row index as 
another feature for our classifier, so that is it. And the same, we can 
do with columns, so for each column, let's compute how many NaNs 
are there in each column. And we see that ID has 0 NaNs, then some 
0s, and then we see that a lot of columns have the same 56 NaNs. And 
that is again something really strange, so either every column 
will have 56 NaNs, and so it's not magic, it's probably just how the 
things go. But if we know that there are a lot of columns, and every 
column have  
4:33 
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more different number of NaNs, then it's really unlikely to have a lot of 
columns  
4:40 
nearer to each other in the data set with the same number of 
NaNs. So probably, our hypothesis could be here that the column 
order is not random, so we could probably investigate this.  
4:55 
So we have about 2,000 columns in this data, and it's a really huge 
number of columns. And it's really hard to work with this data set, 
and basically we don't have any names, so the data is only mice.  
5:09 
As I told you, the first thing we can do is to determine the types of the 
data, so we will do it here. So we're first going to continue train and 
test on a huge data frame like the organizers had, it will have 300,000 
rows. And then we'll first use a unique function to determine how 
many unique values each column has. And basically here we bring 
several values of what we found, and it seems like there are five 
columns that have only one unique number. So we can drop the, 
basically what we have here, we just find them in this line, and then 
we drop them. So next we want to remove duplicated features, but 
first, for convenience, fill not a numbers with something that we can 
find easily later, and then we do the following. So we create another 
data frame of size, of a similar shape as the training set. What we do 
we take a column from train set, we apply a label encoder, as we 
discussed in a previous video, and we basically store it in this new 
train set. So basically we get another data frame which is train, but 
label encoded train set. And having this data frame, we can easily find 
duplicated features, we just start iterating the features with two 
iterators. Basically, one is fixed and the second one goes from the next 
feature to the end.  
6:56 
Then we try to compare the columns, the two columns that we're 
standing at, right. And if they are element wise the same, then we 
have duplicated columns, and basically that is how we fill up this 
dictionary of duplicated columns. We see it here, so we found that 
variable 9 is duplicated for input 8, and variable 18 again is duplicated 
for variable 8, and so on, and so we have really a lot of duplicates in 
here.  
7:27 

�  of �25 36



So this loop, it took some time, so I prefer to dump the results to disk, 
so we can easily restore them. So I do it here, and then I basically 
drop those columns that we found from the train test data frame. So 
yeah, in the second video, we will go through some features and do 
some work to data set 

SpringLeaf Competition II 

So, let's continue exploration. We wanted to determine the types of 
variables, and to do that we will first use this nunique function 
to determine how many unique values again our feature have. And we 
use this dropna=False to make sure this function computes and 
accounts for nons. Otherwise, it will not count nun as unique value. It 
will just unhit them. So, what we see here that ID has a lot of unique 
values again and then we have not so huge values in this series, 
r i gh t? So I have 150 ,000 e lements bu t 6 ,000 un ique 
elements. 25,000, it's not that a huge number, right? So, let's 
aggregate this information and do the histogram of the values from 
above. And it's not histogram of these exact values but but it's 
normalized values. So, we divide each value by the number of rows in 
the tree. It's the maximum value of unique values we could possibly 
have. So what we see here that there are a lot of features that have a 
few unique values and there are several that have a lot, but not so 
much, not as much as these. So these features have almost in every 
row unique value. So, let's actually explore these. So, ID essentially is 
having a lot of unique values. No problem with that. But what is 
this? So what we actually see here, they are integers. They are huge 
numbers but they're integers. Well, I would expect a real, nunique 
variable with real values to have a lot of unique values, not integer 
type variable. So, what could be our guess what these variables 
represent? Basically, it can be a counter again. But what else it could 
be? It could be a time in let's say milliseconds or nanoseconds or 
something like that. And we have a lot of unique values and no 
overlapping between the values because it's really unlikely to have two 
events or two rows in our data set having the same time, let's say it's 
time of creation and so on, because the time precision is quite 
good. So yeah, that could be our guess. So next, let's explore this 
group of features. Again with some manipulations, I found them and 
these are presented in this table. So, what's interesting about 
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this? Actually, if you take a look at the names. So the first one is 541. 
And the second one is 543. Okay. And then we have 1,081 and 
1,082, so you see they are standing really close to each other. It's 
really unlikely that half of the row, if the column order was random, if 
the columns were shuffled. So, probably the columns are grouped 
together according to something and we could explore this 
something. And what's more interesting, if we take a look at the 
values corresponding to one row, then we'll find that'll say this value is 
equal to this value. And this value is equal to this value and this 
value, and this is basically the same value that we had in here. So, we 
have five features out of four of this having the same value. And if you 
examine other objects, some of them will have the same thing 
happening and some will not. So, you see it could be something that is 
really essential to the objects and it could be a nice feature that 
separates the objects from each other. And, it's something that we 
should really investigate and where we should really do some feature 
engineering. So, for say [inaudible] , it will be really hard to find those 
patterns. I mean, it cannot find. Well, it will struggle to find that two 
features are equal or five features are equal. So, if we create or say 
feature that will calculate how many features out of these, how many 
features we have have the same value say for the object zero where 
we'll have the value five in this feature and something for other 
rows, then probably this feature could be discriminative. And then we 
can create other features, say we set it to one if the values in this 
column, this and this and this and this are the same and zero to 
otherwise, and so on. And basically, if you go through these rows, you 
will find that the patterns are different and sometimes the values are 
the same in different columns. So for example, for this row, we see 
that this value is equal to this value. And this value is different to 
previous ones but its equal to this one. And it's really fascinating, isn't 
it? And if it actually will work and improve the model, I will be 
happy. And another thing we see here is some strange values and they 
look like nons. I mean, it's something that a human typed in or a 
machine just autofilled. So, let's go further. Oh, yeah. And the last 
thing is just try to pick one variable from this group and see what 
values does it have. So, let's pick variable 15 and here's its 
values. And minus 999 is probably how we've filled in the nons. And 
yeah, we have 56 of them and all other values are non-negative, so 
probably it's counters. I mean, how many events happened in, I don't 
know, in the month or something like that. Okay. And finally, let's filter 
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the columns and then separate columns into categorical and 
numeric. And i t 's real ly easy to do using this funct ion 
select_dtypes. Basically, all the columns that will have objects type, if 
you would use a function dtypes. We think of them as categorical 
variables. And otherwise, if they are assigned type integer or float or 
something like that, or numeric type then we will think of these 
columns as numeric columns. So, we can go through the features one-
by-one as actually I did during the competition. Well, we have 2,000 
features in this data set and it is unbearable to go through a feature 
one-by-one. I've stopped at about 250 features. And you can find in 
my notebook and reading materials if you're interested. It's a little bit 
messy but you can see it. So, What we will do here, just several 
examples of what I was trying to investigate in data set, let's do the 
following. Let's take the number of columns, we computed them 
previously. So, we'll now work with only the first 42 columns and we'll 
create such metrics. And it looks like correlation matrices and all of 
that type of matrices like when we have the features along the y 
axis, features along the x axis. Basically, well, it's really huge. Yeah. 
And in this case, what we'll have as the values is the number or the 
fraction of elements of one feature that are greater than elements of 
the second feature. So, for example, this cell shows that all variables 
or all values in variable 50 are less than values and variable ID, which 
is expected. So, yeah. And it's opposite in here. So, if we see one in 
here it means that variable 45, for example, is always greater than 
variable 24. And, while we expect this metrics to be somehow 
random, if the count order was random. But, in here we see, for 
example, these kind of square. It means that every second feature is 
greater, not to the second but let's say i+1 feature is greater than the 
feature i. And, well it could be that this information is about, for 
example, counters in different periods of time. So, for example, the 
first feature is how many events happened in the first month. The 
second feature is how many events happened in the first two month 
and so kind of cumulative values. And, that is why one feature is 
always greater than the other. And basically, what information we can 
extract from this kind of metrics is that we have this group and we can 
generate new features and these features could be, for example, the 
difference between two consecutive features. That is how we will 
extract, for example, the number of events in each month. So, we'll go 
from cumulative values back to normal values. And, well linear models, 
say, neural networks, they could do it themselves but tree-based 
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algorithms they could not. So, it could be really helpful. So, in 
attached to non-book in the reading materials you will see that a lot of 
these kind of patterns. So, we have one in here, one in here. The 
patterns, well, this is also a pattern, isn't it? And now we will just go 
through several variables that are different. So, for example, variable 
two and variable three are interesting. If you build a histogram of 
them, you will see something like that. And, the most interesting part 
here are these spikes. And you see, again, they're not random. There's 
something in there. So, if we take this variable two and build there, 
well, use this value count's function, we'll have value and how many 
times it occurs in this variable. We will see that the values, the top 
values, are 12, 24, 36, 60 and so on. So, they can be divided by 12 
and well probably, this variable is somehow connected to time, isn't 
it? To hours. Well, and what can we do? We want to generate features 
so we will generate feature like the value of these variable modular 12 
or, for example, value of this variable integer division by 12. So, this 
could really help. In other competition, you could build a variable and 
see something like that again. And what happened in there, the 
organizers actually had quantized data. So, they only had data that in 
our case could be divided by 12. Say 12, 24 and so on. But, they 
wanted to kind of obfuscate the data probably and they added some 
noise. And, that is why if you plot an histogram, you will still see the 
spikes but you will also see something in between the spikes. And so, 
again, these features in that competition they work quite well and 
you could dequantize the values and it could really help. And the same 
is happening with variable 3 basically, 0, 12, 24 and so on. And 
variable 4, I don't have any plot for variable 4 itself in here but 
actually we do the same thing. So, we take variable 4, we create a 
new feature variable 4 modulus 50. And now, we plot this kind of 
histogram. What you see here is light green, there are actually two 
histograms in there. The first one for object from the class 0 and the 
second one for the objects from class 1. And one is depicted with light 
green and the second one is with dark green. And, you see these other 
values. And, you see only difference in these bar, but, you see the 
difference. So, it means that these new feature variable 4 modulus 50 
can be really discriminative when it takes the value 0. So, one could 
say that this is kind of, well, I don't know how to say that., I mean, 
certain people would never do that. Like, why do we want to take away 
modular 50? But, you see sometimes this can really help. Probably 
because organizers prepare the data that way. So, let's get through 
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categorical features. We have actually not a lot of them. We have 
some labels in here, some binary variables. I don't know what is 
this, this is probably is some problems with the encoding I have. And 
then, we have some time variables. This is actually not a time. Time. 
Not a time. Not a time. This is time. Whoa, this is interesting. This 
looks like cities, right? Or towns, I mean, city names. And, if you 
remember what features we can generate from geolocation, it's the 
place to generate it. And, then again, it was some time, some labels 
and once again, it's the states. Isn't it? So, again, we can generate 
some geographic features. But particularly interesting, the features are 
the date. Dates that we had in here. And basically, these are all the 
columns that I found having the data information. So, it was one of 
the best features for this competition actually. You could do the 
following, you could do a scatter plot between two date features to 
particular date features and found that they have some relation, and, 
one is always greater than another. It means that probably these are 
dates of some events and one event is happening always after the first 
one. So, we can extract different features like the difference between 
these two dates. And in this competition, it really helped a lot. So, be 
sure to do exploratory data analysis and extract all the powerful 
features like that. Otherwise, if you don't want to look into the 
data, you will not find something like that. And, it's really interesting.  

Numeri EDA 
Here I will tell you about the specifics of Numerai Competition that was 
held throughout year 2016. Note that Numerai organizers changed the 
format in 2017. So, the findings I'm going to read will not work on new 
data. Let's state the problem.  
Participants were solving a binary 
classification task on a data set with 
21 anonymized numeric features. 
Unusual part is that both train and 
test data sets have been updating 
every week. Data sets were also 
shuffled column-wise. So it was like a 
new task every week. Pretty challenging. As it turned out, this 
competition had a data leak. Organizers did not disclose any 
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information about the nature of 
data set. But allegedly, it was 
some time series data with target 
variable highly dependent on 
transitions between time points. 
T h i n k o f s o m e t h i n g l i k e 
predicting price change in stock 
market here. Means that, if we 
k n e w t r u e o r d e r o r h a d 
timestamp variable, we could easily get nearly perfect score. And 
therefore, we had to somehow reconstruct this order. Of course, 
approximately. But even a rough approximation was giving a huge 
advantage over other participants. The first and most important step is 
to find a nearest neighbor for every point in a data set, and add all 21 
features from that neighbor to original point. Simple logistic regression 
of those 42 features, 21 from original, and 21 from neighboring points, 
allowed to get into top 10 on the 
leader board. Of course, we can 
get better scores with some 
hardcore EDA. Let 's start 
exploring correlation matrix of 
new 21 features. If group 
features with highest correlation 
coefficient next to each other, 
we'll get a right picture. This 
picture can help us in two 
different ways. First, we can 
actually fix some column order. So, weekly column shuffling won't 
affect our models.  
And second, we can clearly notice seven 
groups with three highly correlated features 
in each of them. So, the data actually has 
some non-trivial structure. Now, let's 
remember that we get new data sets every 
week. What is more? Each week, train data 
sets have the same number of points. We 
can assume that there is some connection 
between consecutive data sets. This is a 
little strange because we already have a time series. So, what's the 
connection between the data from different weeks? Well, if we find 
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nearest neighbors from 
every point in current data 
set from previous data set, 
a n d p l o t d i s t a n c e 
distributions, we can notice 
that first neighbor is much, 
m u c h c l o s e r t h a n t h e 
second. So, we indeed have 
some connection between 
consecutive data sets.  

And it looks like we can build a bijective mapping between them. But 
let's not quickly jump into conclusions and do more exploration. Okay. 
We found a nearest neighbor in previous data set. What if we examine 
the distances between the neighboring objects at the level of individual 
features? We clearly have three different groups of seven 
features. Now remember, the sorted correlation matrix? It turns out 
that each of three highly correlated features belong to a different 
group. A perfect match. And if we multiply seven features from the 
first group by three, and seven features from the second group by two 
in the original data set, recalculate nearest neighbor-based features 
within the data sets, and re-train our models, we'll get a nice 
improvement. So, after this magic multiplications, of course, I'd tried 
other constants, our true order approximation became a little better.  

Great. Now, let's move to the true relation. New data, weekly updates, 
all of it was a lie. Remember, how we were calculating neighbors 
between consecutive data sets? Well, we can forget about 
consecutiveness. Calculate neighbors between current data set, and 
the data set from two weeks ago or two months ago. No matter what, 
we will be getting pretty much the same distances. Why? The simplest 
answer is that the data actually didn't change. And every week, we 
were getting the same data, plus a little bit of noise. And thus, we 
could find nearest neighbor in each of previous data sets, and average 
them all, successfully reducing the variance of added noise. After 
averaging, true order approximation became even better. I have to say 
that a little bit of test data actually did change from time to time. But 
nonetheless, most of the roles migrated from week to week. Because 
of that, it was possible to probe the whole public leader board which 
helped even further, and so on. Of course, there are more details 
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regarding that competition, but they aren't very interesting. I wanted 
to focus on the process of reverse engineering. Anyway, I hope you 
like this kind of detective story and realized how important exploratory 
data analysis could be. 

Validation and OverFitting 

This isn't the rare case in competitions when you see people jumping 
down on leaderboard after revealing private results. So, we ask 
ourselves, what is happening out there?  

There are two main reasons for these jumps. First, competitors could 
ignore the validation and select the submission which scored best 
against the public leaderboard. Second, is that sometimes 
competitions have no consistent public/private data split or they have 
too little data in either public or private leaderboard. Well, we as 
participants, can't influence competitions organization. We can 
certainly make sure that we select our most appropriate submission to 
be evaluated by private leaderboard.  

So, the whole goal of next videos is to provide you a systematic way to 
set up validation in a competition, and tackle most common validation 
problems.  

Let's quickly overview of the content of the next videos. First, in this 
video, we will understand the concept of validation and overfitting. In 
the second video, we will identify the number of splits that should be 
done to establish stable validation. In the third video, we will go 
through most frequent methods which are used to make train/test split 
in competitions. In the last video, we will discuss most often validation 
problems.  

Now, let me start to explain the concept for validation for those who 
may never heard of it. In a nutshell, we want to check if the model 
gives expected results on the unseen data. For example, if you've 
worked in a healthcare company which goal is to improve life of 
patients, we could be given the task of predicting if a patient will be 
diagnosed a particular disease in the near future. Here, we need to be 
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sure that the model we train will be applicable in the future. And not 
just applicable, we need to be sure about what quality this model 
will have depending on the number of mistakes the model make. And 
on the predictive probability of a patient having this particular 
disease, we may want to decide to run special medical tests for the 
patient to clarify the diagnosis. So, we need to correctly understand 
the quality of our model. But, this quality can differ on train data from 
the past and on the unseen test data from the future. The model could 
just memorize all patients from the train data and be completely 
useless on the test data because we don't want this to happen. We 
need to check the quality of the model with the data we have and 
these checks are the validation.  
So, usually, we divide data we 
have into two parts, train part and 
validation part. We fit our model 
on the train part and check its 
quality on the validation part. 
Beside that, in the last example, 
our model will be checked against the unseen data in the future and 
actually these data can differ from the data we have.  

So we should be ready for this. In competitions, we usually have the 
similar situation. The organizers of a competition give us the data in 
two chunks. First, train data with all target values. And second, test 
data without target values. As in the previous example, we should split 
the data with labels into train and validation parts. Furthermore, to 
ensure the competition spirit, the organizers split the test data into the 
public test set and the private test set. When we send our submissions 
to the platform, we see the scores for the public test set while the 
scores for the private test set are released only after the end of the 
competition.  
This also ensures that we don't need the test set or in terms of a 
model do not overfit. Let me draw you an analogy with the disease 
projection, if we already divided our data into train and validation 
parts. And now, we are repeatedly checking our model against the 
validation set, some models, just by chance, will have better scores 
than the others.  
If we continue to select best models, modify them, and again select 
the best from them, we will see constant improvements in the 
score. But that doesn't mean we will see these improvements on the 
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test data from the future. By repeating this over and over, we could 
just achieve the validation set or in terms of a competition, we could 
just cheat the public leaderboard. But again, if it overfit, the private 
leaderboard will let us down. This is what we call overfitting in a 
competition. Get an unrealistically good scores on the public 
leaderboard that later result in jumping down the private 
leaderboard. So, we want our model to be able to capture patterns 
in the data but only those patterns that generalize well between both 
train and test data.  

Let me show you this process in terms of under-fitting and 
overfitting. So, to choose the best model, we basically want to avoid 
under-fitting on the one side and overfitting on the other. Let's 
understand this concept on a very simple example of a binary 
classification test. We will be using simple models defined by formulas 
under the pictures and visualize the results of model's predictions. 
Here on the left picture, we can see that if the model is too simple, it 
can’t capture underlined relationship and we will get poor results. This 
is called under-fitting. Then, if we want our results to improve, we can 
increase the complexity of the model and that will probably find that 
quality on the training data is going down. But on the other hand, if we 
make too complicated model like 
on the right picture, it will start 
describing noise in the train data 
that doesn't generalize the test 
data. And this will lead to a 
decrease of model's quality. This 
is called overfitting. So, we want 
something in between under-
fitting and overfitting here.  

And for the purpose of choosing the most suitable model, we want to 
be able to evaluate our results. Here, we need to make a remark, that 
the meaning of overfitting in machine learning in general and the 
meaning of overfitting competitions in particular are slightly different.  

In general, we say that the model is overfitted if its quality on the train 
set is better than on the test set. But in competitions, we often 
say, that the models are overfitted only in case when quality on the 
test set will be worse than we expected. For example, if you train 
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gradient boosting decision tree in a competition with area under a 
curve metric, we sometimes can observe that the quality on the 
training data is close to 1 while on the test data, it could be less for 
example, near 0.9. In general sense, the models overfitted here but 
while we get area under curve was 0.9 on both validation and public/
private test sets, we will not say that it is overfitted in the context of a 
competition.  

Let me illustrate this concept again in a bit different way. So, lets say 
for the purpose of model evaluation, we divided our data into two 
parts. Train and validation parts. Like we already did, we will derive 
model's complexity from low to high and look at the models 
here. Note, that usually, we understand error or loss is something 
which is opposite to model's quality or score. In the figure, the 
dependency looks pretty reasonable. For two simple models, we have 
under-fitting which means higher on both train and validation. For two 
complex models, we have overfitting which means low error on train 
but again high error on validation. In the middle, between them, if the 
perfect model's complexity, it has the lowest train on the validation 
data and thus we expect it to have the lowest error on the unseen test 
data. Note, that here the training error is always better than the test 
error which implies overfitting in general sense, but doesn't apply in 
the context of competitions. Well done. In this video, we define 
validation, demonstrated its purpose, and interpreted validation in 
terms of under-fitting and overfitting. So, once again, in general, the 
validation helps us answer the question, what will be the quality of our 
model on the unseeing data and help us select the model which will be 
expected to get the best quality on 
that test data. Usually, we are trying 
to avoid under-fitting on the one side 
that is we want our model to be 
expressive enough to capture the 
patterns in the data. And we are 
trying to avoid overfitting on the other 
side, and don't make too complex 
model, because in that case, we will 
start to capture noise or patterns that 
doesn't generalize to the test data. 
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