
Week 2 - Part 1
EDA
In this lesson we will talk about the very first steps a good data
scientist takes when he is given a new data set. Mainly, exploratory
data analysis or EDA in short. By the end of this lesson, you will know,
what are the most important things from data understanding and
exploration prospective we need to pay attention to. This knowledge is
required to build good models and achieve high places on the leader
board. We will first discuss
what exp lo ra tory data
analysis is and why we need
it. We will then go through
important parts of EDA
process and see examples of
what we can discover during
EDA.

Next we will take a look at the tools we have to perform exploration.
What plots to draw and what functions from pandas and matplotlib
libraries can be useful for us. We will also briefly discuss a very basic
data set cleaning process that is convenient to perform while exploring
the data. And finally we'll go through exploration process for the
Springleaf competition hosted on Kaggle some time ago.

What is EDA? It's basically a process of looking into the data,
understanding it and getting comfortable with it.

Getting comfortable with a task, probably always the first thing you
do. To solve a problem, you need to understand a problem, and to
know what you are given to solve. In data science, complete data
understanding is required to generate powerful features and to build
accurate models. In fact while you explore the data, you build an
intuition about it. And when the data is intuitive for you, you can
generate hypothesis about possible new features and eventually find
some insights in the data which in turn can lead to a better score. We
will see the example of what EDA can give us later in this lesson.

� of �1 36

Well, one may argue that there is another way to go. Read the data
from the hard drive, never look at it and feed the classifier
immediately.They use some pretty advanced modeling techniques, like
mixing, stacking, and eventually
get a pretty good score on the
leaderboard . A l though th i s
approach sometimes works, it
cannot take you to the very top
positions and let you win. Top
solutions always use advanced
and aggressive modeling. But
usually they have something more
than that. They incorporated
insights from the data, and to find
those insights, they did a careful
EDA.

While we need to admit the raw computations where all you can do
is modeling and EDA will not help you to build a better model. It is
usually the case when the data is anonymized, encrypted, pre-
processed, and obfuscated. But look it will any way need to perform
EDA to realize that this is the case and you better spend more time on
modeling and make a server busy for a month.

One of the main EDA tools is
Visualization. When we visualize the
data, we immediate ly see the
patterns. And with this, ask ourselves,
what are those patterns? Why do we
see them? And finally, how do we use
those patters to build a better
model? It also can be another way
around. Maybe we come up with a
particular hypothesis about the
data. What do we do? We test it by
making a visualization.

In one of the next videos, we'll talk about the main visualization tools
we can use for exploration.

� of �2 36

Just as a motivation example, I want to tell you about the competition,
alexander D'yakonov, a former
top one at Kagel took part
s o m e t i m e a g o . T h e
interesting thing about this
competition is that you do
not need to do any modeling,
if you understood your data
well. In that competition, the
objective was to predict whether a person will use the promo that a
company offers him. So each row correspond to a particular promo
received by a person. There are features that describe the person,
for example his age, sex, is he married or not and so on. And there
are features that describe the promo, the target is 0 or 1, will he use
the promo or not.

But, among all the features there were two especially interesting. The
first one is, the number of promos sent by the person before. And the
second is the number of promos the person had used before.

So let's take a particular user, say with index 13, and sort the rows by
number of promos sent column.

And now let's take a look at the
d i f ference at co lumn the
n u m b e r o f u s e d p r o m o s
between two consecut ive
rows. It is written here in diff
column.
And look, the values in diff
column in most cases equal the
target values.

And in fact, there is no magic. Just think about the meaning of the
columns. For example, for the second row we see that the person used
one promo already but he was sent only one before that time. And
that is why we know that he used the first promo and thus we have an
answer for the first row.

� of �3 36

In general, if before the current promo the person used n promos
and before the next promo he used that, we know that he used n + 1
promos then we realize that he used the current promo. And so the
answer is 1. If we know that he used n promos before the next
promo, exactly as before the current promo, then obviously he did not
use the current promo and the answer is 0. Well, it's not clear what to
do with the last row for every user, or when we have missing rows, but
you see the point. We didn't even run the classifier, and we have 80%
accuracy already. This would not be possible if we didn't do an EDA
and didn't look into the data.

Also as a remark, I should say that the presented method
works because of mistake made by the organizers during data
preparation. These mistakes are called leaks, and in competitions we
are usually allowed to exploit them. We'll see more of these examples
later in this course.

So in this video we discussed the main reasons for performing an
EDA. That is to get comfortable with the data and to find insights in
magic features.

We also saw an example where EDA and the data understanding was
important to get a better score.

And finally, the point to take away. When you start a competition, you
better start with EDA, and not with hardcore modeling.

Building Intuition
In this video, we'll go through and break down several important steps
namely, the first, getting domain knowledge step, second, checking if
data is intuitive, and finally, understanding how the data was
generated. So let's start with the
first step, getting the domain
knowledge. If we take a look at
the computations hosted in the
Kaggle, well, you'll notice, they
are rather diverse. Sometimes,
we need to detect threads on three dimensional body scans, or predict
real estate price, or classify satellite images. Computation can be on a

� of �4 36

very specific topic which we know almost nothing about, that is, we
don't have a domain knowledge. Usually, we don't need to go too deep
inside the field but it's preferable to understand what our aim is, what
data we have, and how people usually tackle this kind of problems to
build a baseline. So, our first
step should probably be
s e a r c h i n g f o r t h e
t op i c , Goog l i ng w i t h i n
Wikipedia, and making sure
we understand the data. For
example, let's say we start a
new computation in which
w e n e e d t o p r e d i c t
advertisers cost. Our first step is to realize that the competition is
about web advertisement. By looking and searching for the column
names, using any search engine, we understand that the data was
exported from Google AdWords system. And after reading several
articles about Google AdWords, we get the meaning of the columns.
We now know that impressions column contained the number of times
a particular ad appeared before users, and clicks column is how many
times the ad was clicked by the users, and of course, the number of
clicks should be less or equal than the number of impression. In this
video, we'll not go much further into the details about this data set,
but you can open the supplementary reading material for a more
detailed exploration. After we've learned some domain knowledge, it is
necessary to check if the
values in the data set are
intuitive, and agree with our
d oma i n know l edge . Fo r
example, if there is a column
with age data, we should
expect the values rarely to be
larger than 100. And for sure,
no one ever lived more than
200 years. So, the values
should be smaller than 200.
But for some reason, we find
this super huge value 336.
Most probably, is just a typo but it should be 36 or 33, and the best we
can do is manually correct it. But the other possibility is that its not a

� of �5 36

human age, but some alien's age for which it's totally normal to live
more than 300 years. To check that, we should probably read the data
description one more time, ask on forums. Maybe the data is totally
correct, and then we just misinterpret it. Now, take a look at our
Google AdWords data set. We understood that the values in the clicks
variable should be less
or equal than the values
i n i m p r e s s i o n s
column. And in our case,
in the first row, we see
zero impressions and
t h r e e c l i c k e r. T h a t
s ounds l i ke a bug ,
right? In fact, it probably
is, but differently to the example of person's age, it could be rather a
regular error made by either data exporting script or another kind of
algorithm. That is, the errors were made not at random, but there is
some kind of logic why there is an error in that particular place. It
means that these mistakes can be used to get a better score. For
example, in our case, we could create a new feature, is_incorrect, and
mark all the rows that have errors. Probably, our models will find this
feature helpful. It is also very important to understand how the data
was generated. What was the algorithm for sampling objects from the
database? Maybe, the host sample get objects at random, or they
over-sample a particular class, that is, they generated more examples
of that class. For example, to make the dataset more class
balanced. In fact, only if you know how the data was generated, you
can set up a proper validation scheme for models. Coming up with a
correct validation pipeline is crucial, and we will discuss it later in this
course. So, what can we possibly find out about generation
processes? For example, we could find out the train and test set were
generated with different algorithms. And if the test set is different from
the train set, we cannot use part of the train set as a validation
set, because this part will not be representative of test set. And so, we
cannot evaluate our models using it. So once again, to set up a correct
validation, we need to know underlying data generation processes. In
the ad competition, we discussed before, there were all the symptoms
of different train/test sampling. Improving the model on validation
set didn't result into improved public leader-board score. And more,
the leader-board score was unexpectedly higher than the validation

� of �6 36

score. I was also visualizing various things while trying to understand
what's happening, and every time, the plots for the train set were
much different to the test set plots. This also could not happen if the
train and test set were similar. And finally, it was suspicious that
although the train period was more than ten times larger than the test
period, the train set had much fewer
rows. It was not straightforward, but
this triangle on the left figure was the
clue for me, and the puzzle was
solved. I've adjusted the train set to
match test set. The validation score
became reliable, and the modeling
could be commenced. You can find the
e n t i r e t a s k d e s c r i p t i o n a n d
investigation in the written materials.
So, in this video, we've discussed several important exploratory steps.
First, we need to get domain knowledge about the task as it helps to
better understand the problem and the data. Next, we need to check if
the data is intuitive, and agrees with our domain knowledge. And
finally, it is necessary to understand how the data was generated by
organizers because otherwise, we cannot establish a proper validation
for our models.

J u p y t e r
NoetBook

� of �7 36

https://hub.coursera-notebooks.org/user/vksdjvctrbvqaattazenmx/notebooks/readonly/reading_materials/EDA_video2.ipynb
https://hub.coursera-notebooks.org/user/vksdjvctrbvqaattazenmx/notebooks/readonly/reading_materials/EDA_video2.ipynb

Exploring Anonymized Data
In the previous video, we were working with the data for which we had a nice
description. That is, we knew what the features were, and the data was given us
as these without severe modifications. But, it's not always the case. The data can
be anonymized, and obfuscated.

In this video, we'll first discuss what is anonymized data, and why organizers
decide to anonymize their data.

And next, we will see what we as competitors can do about it. Sometimes we can
decode the data, or if we can not we can try to guess, what is the type of
feature. So, let's get to the discussion.

Sometimes the organizers really want some information to be reviewed. So, they
make an effort to export competition data, in a way one couldn't get while you're
out of it. Yet all the features
a r e p r e s e r v e d , a n d
machinery model will be
able to do it's job. For
example, i f a company
wants someone to classify
its document, but doesn't
w a n t t o r e v e a l t h e
document's content. It can
r e p l a c e a l l t h e w o r d
occurrences with hash values of those words, like in the example you see here.

In fact, it will not change a thing for
a model based on bags of words.

I will refer to Anonymized data as to
a n y d a t a w h i c h o r g a n i z e r s
intentionally changed. Although it is
not completely correct, I will use
this wording for any type of
changes.
In competitions with tabular data,
co mp a n i e s ca n t r y t o h i d e

� of �8 36

information each column stores. Take a look at this data set. First, we don't have
any meaningful names for the features. The names are replaced with some
dummies, and we see some hash like values in columns x1 and x6. Most likely,
organizers decided to hash some sensitive data. There are several things we can
do while exploring the data in this case.

First, we can try to decode or de-anonymize the data, in a legal way of
course. That is, we can try to guess true meaning of the features. Sometimes de-
anonymization is not possible, but what we almost surely can do, is to guess the
type of the features, separating them into numeric, categorical, and so on.

Then, we can try to find how features relate to each other. That can be a specific
relation between a pair of features, or we can try to figure out if the features are
grouped in some way.

In this video we will concentrate on the first problem. In the next video we will
discuss visualization tools, that we can use both for exploring individual features,
and feature relations.

 Jupyter NoteBook

Let's now get to an example how it was possible to decode the meaning of the
feature in one local competition I took part. I want to tell you about a competition I
took part. It was a local competition, and organizers literally didn't give
competitors any information about a dataset. They just put the link to download
data on the competition page, and nothing else. Let's read the data first, and
basically what we see here is that the data is anonymized. The column names
are like x something, and the values are hashes, and then the rest are numeric in
here. But, well we don't know what they mean at all, and basically we don't what
we are to predict. We only know that it is a multi-class classification task, and we
have four labels.

So, as long as we don't know what the data is, we can probably build a quick
baseline. Let's import Random Forest Classifier.

Yeah, of course we need to drop target label from our data frame, as it is
included in there. We'll fill null values with minus 999, and let's encode all the
categorical features, that we can find by looking at the types. Property of our data
frame. We will encode them with Label Encoder, and it is easier to do with
function factorize from Pandas. Let's feed to Random Forest Classifier on our
data.

� of �9 36

https://hub.coursera-notebooks.org/user/vksdjvctrbvqaattazenmx/notebooks/readonly/reading_materials/EDA_video3_screencast.ipynb

And let's plot the feature importance's, and what we see here is that feature X8
looks like an interesting one. We should probably investigate it a little bit
deeper. If we take the feature X8, and print it's mean, and estimate the
value. They turn out to be quite close to 0, and 1 respectively, and

it looks like this feature was tendered skilled by the organizers. And we don't see
here exactly 0, and exactly 1, because probably training test was concatenated
when on the latest scale. If we concatenate training test, then the mean will be
exactly 0, and the std will be exactly 1.

Okay, so let's also see are there any other repeated values in these
features? We can do it with a value counts function. Let's print first 15 rows of
value counts out.

And we can see that there are a lot of repeated values, they repeated a thousand
times.

All right, so we now know that this feature was standard scaled. Probably, we can
try to scale it back. The original feature was multiplied by a number, and was
shifted by a number.

All we need to do is to find the shooting parameter, and the scaling
parameter. But how do we do that, and it is really possible? Let's take unique
values of the feature, and sort them.

And let's print the difference between two consecutive numbers, in this sorted
array. And look, it looks like the values are the same all the time. The distance
between two consecutive unique values in this feature, was the same in the
original data to. It was probably not 0.043 something, it was who knows, it could
be 9 or 11 or 11.7, but it was the same between all the pairs, so assume that it
was 1 because, well, 1 looks like a natural choice. Let's divide our feature by this
number 0.043 something, and if we do it, yes, we see that the differences
become rather close to 1, they are not 1, only because of some numeric errors.

So yes, if we divide our feature by this value, this is what you get. All right, so
what else do we see here. We see that each number, it ends with the same
values.

Each positive number ends with this kind of value, and each negative with this,
look. It looks like this fractional part was a part of the shifting parameter, let's just
subtract it. And in fact if we subtract it, the data looks like an integers,

� of �10 36

actually. Like it was integer data, but again because of numeric errors, we see
some weird numbers in here.

Let's round the numbers, and that is what we get. This is actually on the first ten
rows, not the whole feature. Okay, so what's next? What did we do so far? We
found the scaling parameter, probably we were right, because the numbers
became integers, and it's a good sign.

We could be not right, because who knows, the scaling parameter could be 10
or 2 or again 11 and still the numbers will be integers. But, 1 looks like a good
match.

It couldn't be as random, I guess. But, how can we find the shifting parameter?
We found only fractional part, can we find the other, and can we find the integer
part, I mean?
It's actually a hard question, because while you have a bunch of numbers in
here, and you can probably build a hypothesis. It could be something, and the
regular values for this something is like that, and we could probably scale it, shift
it by this number. But it could be only an approximation, and not a hypothesis,
and so our journey could really end up in here. But I was really lucky, and I will
show it to you, so if you take your x8. I mean our feature, and print value counts,
what we will see, we will this number 11, 17, 18, something.

And then if we scroll down we will see this, -1968, and it definitely looks like year
a of birth, right? Immediately I have a hypothesis, that this could be a text box
where a person should enter his year of birth.

And while most of the people really enter their year of birth, but one person
entered zero. Or system automatically entered 0, when something wrong
happened.

And wow, that isn't the key. If we assume the value was originally 0, then the
shifting parameter is exactly 9068, let's try it.

Let's add 9068 to our data, and see the values. Again we will use value counts
function, and we will sort sorted values. This is the minimum of the values, and in
fact you see the minimum is 0, and all the values are not negative, and it looks
really plausible.

Take a look, 999, it's probably what people love to enter when they're asked to
enter something, or this, 1899. It could be a default value for this textbook, it

� of �11 36

occurred so many times. And then we see some weird values in here. People just
put them at random. And then, we see some kind of distribution over the dates.

That are plausible for people who live now, like 1980.

Well maybe 1938, I'm not sure about this, and yes of course we see some days
from the future, but for sure it looks like a year of birth, right?

Well the question, how can we use this information for the competition?

Well again for linear models, you probably could make a new feature like age
group, or something like that. But In this particular competition,

it was no way to use this for, to use this knowledge. But, it was really fun to
investigate. I hope you liked the example, but usually is really hard to recognize
anything sensible like a year of birth anonymous features. The best we can do is
to recognize the type of the feature. Is it categorical, numeric, text, or something
else?

Last week we saw that each
data type should be treated
differently, and more treatment
depends on the model we want
to use.
That is why to make a stronger
model, we should know what
data we are working with. Even
though we cannot understand
w h a t t h e f e a t u r e s a r e
about, we should at least
detect the types of variables in
the data. Take a look at this example, we don't have any meaningful companies,
but still we can deduce what the feature types are. So, x1 looks like text or
physical recorded, x2 and x3 are binary,

x4 is numeric, x5 is either categorical or numeric. And more, if it's numeric it
could be something like event calendars, because the values are integers.

When the number of columns in data set is small, like in our example, we can
just bring the table, and manually sort the types out. But, what if there are
thousand of features in the data set?

� of �12 36

Very useful functions to facilitate our exploration, function d types from pandas
guesses the types for each column in the data frame. Usually it groups all the
columns into three categories, flawed, integer, and so called object type. If dtype
function assigned flawed type to a feature, this feature is most likely to be
numeric.

Integer typed features can be either binary encoded with a zero or one. Event
counters, or even categorical, encoded with the label encoder.

Sometimes this function returns a type named object. And it's the most
problematic, it can be anything, even an irregular numeric feature with missing
values filled with some text.

Try it on your data, and also check out a very similar in full function from Pandas.

To deal with object types, it is useful to print the data and literally look at it. It is
useful to check unique values with value counts function, and nulls location with
isnull function at times.

In this lesson, we were discussing two things we can do with anonymized
features. We saw that sometimes, it's possible to decode features, find out what
this feature really means.

It doesn't matter if we understand the meaning of the features or not, we should
guess the feature types, in order to pre-process features accordingly to the type
we have, and selected model class. In the next video, we'll see a lot of colorful
plots, and talk about visualization, and other tools for exploratory data analysis

� of �13 36

Visualization
In the previous video, we've tried to
decode anonymized features and guess
their types. In fact, we want to do more.
We want to generate new features and to
find insights in a data. And in this lesson,
we will talk about various visualizations
that can help us with it. We will first see
what plots we can draw to explore
individual features, and then we will get
to exploration of feature relations. We'll explore pairs first and then
we’ll try to find feature groups in a dataset. There is no recipe how you
find interesting things in the data. You should just spend some time
looking closely at the data table, printing
it, and examining. If we found something
interesting, we then can take a closer
look. So, EDA is kind of an art, but we
have a bunch of tools for it which we'll
discuss right now. The first, we can build
histograms. Note that histograms may be
misleading in some cases, so try to vary
its number of bins when using it. Also,
know that it aggregates in the data, so
we cannot see, for example, if all the
values are unique or there are a lot of
repeated values. Let's see in other
example. The first thing that I want to
illustrate here is that histograms can
confuse. Looking at this histogram, we
could probably think that there are a lot
of zero values in this feature. But in fact,
if we take logarithm of the values and
build histogram again, we'll clearly see
that distribution is non-degenerate and there are many more distinct
values than one. So my point is never make a conclusion based on a
single plot. If you have a hypothesis, try to make several different
plots to prove it. The second interesting thing here is that peak. What

� of �14 36

is it? It turns out that the peak is located exactly at the mean value of
this feature. Seems like organizers filled the missing values with the
mean values for us. So, now we understand that values were originally
missing. How can we use this information? We can replace the missing
values we found with NaNs, nulls again. For example, XGBoost has a
special algorithm that can fill missing values on its own and so, maybe
XGBoost will benefit from explicit missing values. Or we can fill the
missing values with something other than feature mean, for example,
with -999. Or we can generate a new feature which will indicate that
the value was missing. This can be particularly useful for linear
models.

We can also build the plot where on X
axis, we have a row index, and on the Y
axis, we have feature values. It is
convenient not to connect points
with line segments but only draw them
with circles. Now, if we observe
horizontal lines on this kind of plot, we
understand there are a lot of repeated
values in this feature. Also, note the
randomness over the indices. That is,
we see some horizontal patterns but no vertical ones. It means that
the data is properly shuffled.

We can also color code the points
according to their labels. Here, we see
that the feature is quite good as it
presumably g ives a n ice c lass
separation. And also, we clearly see
that the data is not shuffled here. It is,
in fact, sorted by class label.

It is useful to examine statistics with
Pandas' describe function. You can see
examples of its output on the screenshot. It
gives you information about mean, standard
deviation, and several percentiles of the
feature distribution. Of course, you can
manually compute those statistics.

� of �15 36

And finally, as we already discussed in
t h e p r e v i o u s v i d e o , t h e r e i s
value_counts function to examine the
number of occurrences of distinct
feature values, and a function
isnull, which helps to find the missing
values in the data. For example, you
can visualize null patterns in the data
as on the picture you see.

So, here's the ful l l ist of functions we've
discussed. Make sure you remember each of them.

To this end, we've discussed visualizations for
individual features. And now, let's get to the next
topic of our discussion, exploration of feature
relations. It turns out that sometimes, it's
hard to make conclusions looking at one
feature at a time. So let's look at the
pairs. The best two here is a scatter plot.
With it, we can draw one sequence of
values versus another one.

And usually, we plot one feature versus
another feature. So each point on the
figure correspond to an object with the
feature values shown by points position. If
it's a classification task, it's convenient to
color code the points with their labels like on this picture. The color
indicates the class of the object. For regression, the heat map light
coloring can be used, too. Or alternatively, the target value can be
visualized by point size. We can effectively use scatter plots to check
if the data distribution in the train and test sets are the same.

In this example, the red points correspond to
class zero, and the blue points to class
one. And on top of red and blue points, we see
gray points. They correspond to test set. We
don't have labels for the test set, that is why
they are gray. And we clearly see that the red

� of �16 36

points are mixed with part of the gray ones, and that that is good
actually. But other gray points are located in the region where we don't
have any training data, and that is bad. If you see some kind of
discrepancy between colored and gray points distribution, you should
probably stop and think if you're doing it right. It can be just a bug in
the code, or it can be completely overfitted feature, or something else
that is for sure not healthy.

Now, take a look at this scatter plot. Say,
we plot feature X1 versus feature
X2. What can we say about their
relation? The right answer is X2 is less or
equal than one_minus_X1. Just realize
that the equation for the diagonal line is
X1 + X2 = 1, and for all the points below
the line, X2 is less or equal than
one_minus_X1. So, suppose we found
this relation between two features, how
do we use this fact? Of course, it
depends, but at least there are some
obvious features to generate. For tree-
based models, we can create a new features like the difference or ratio
between X1 and X2.

Now, take a look at this scatter plot. It's
hard to say what is the true relation
between the features, but after all, our goal
is not to decode the data here but to
generate new features and get a better
score. And this plot gives us an idea how to
generate the features out of these two
features. We see several triangles on the
picture, so we could probably make a
feature to each triangle a given point
belongs, and hope that this feature will
help.

When you have a small number of features, you can plot all the
pairwise scatter plots at once using scatter matrix function from
Pandas. It's also nice to have histogram and scatter plot before the

� of �17 36

eyes at the same time as scatter plot gives
you ve r y vague i n f o rma t i on abou t
densities, while histograms do not show
feature interactions.

We can also compute some kind of distance
between the columns of our feature table and
store them into a matrix of size number of
features by a number of features. For
example, we can compute correlation between the counts. It's the
most common type of matrices people build, correlation metric. But we
can compute other things than correlation. For example, how many
times one feature is larger than the other? I mean, how many rows
are there such that the value of the first feature is larger than the
value of the second one? Or another example, we can compute how
many distinct combinations the features
have in the dataset. With such custom
functions, we should build the matrix
manually, and we can use matshow
function from Matplotlib to visualize it like
on the slide you see.

If the matrix looks like a total mess like in
here, we can run some kind of clustering
like K-means clustering on the rows and
columns of this matrix and reorder the
features. This one looks better, isn't it?

We actually came to the last topic of our
discussion, feature groups. And it's what
we see here. There are groups of very
similar features, and usually, it's a good
idea to generate new features based on
the groups.
Again, it depends, but maybe some
statistics could collated over the group will work fine as features.
Another visualization that helps to find feature groups is the following:
We calculate the statistics of each feature, for example, mean value,
and then plot it against column index. This plot can look quite random

� of �18 36

if the columns are shuffled. So, what if
we sorted the columns based on this
statistic? Feature mean, in this case. It
looks like it worked out. We clearly see
the groups here. So, now we can take a
closer look to each group and use the
imagination to generate new features.

So, finally in this video, we we're talking
about the tools and functions that help us
with data exploration.
For example, to explore features one by
one, we can use histograms, plots, and
we can also examine statistics.
To explore a relation between the
features, the best tool is a scatter plot.
Scatter matrix combines several scatter
plots and histograms on one figure.
Correlation plot is useful to understand
how similar the features are. And if we
reorder the columns and rows of the
correlation matrix, we'll probably find
feature groups. And feature groups was
the last topic we discussed in this
lesson. We also saw a plot of sorted
feature statistics and how it can reveal as
feature groups. Well, of course, we've
discussed only a fraction of helpful plots
there are. With practice, you will develop
and find your own tools for further
exploration.

� of �19 36

Data Cleaning
Here we discuss a little bit of dataset cleaning and see how to check if
dataset is shuffled. It is important to understand that the competition
data can be only a part of the
data organizers have. The
organizers could give us a
fraction of objects they have or a
fraction of features. And that is
why we can have some issues
with the data. For example, we
can encounter a feature which
takes the same value for every
object in both train and test set.
This could be due to the sampling procedure. For example, the future
is a year, and the organizers exported us only one year of data. So in
the original data that the organizers have, this future is not constant,
but in the competition data it is constant. And obviously, it is not
useful for the models and just occupy some memory. So we are about
to remove such constant features. In this example dataset feature zero
is constant. It can be the case that the feature is constant on the train
set but how is different values on the test set. Again, it is better to
remove such features completely since it is constant during training. In
our dataset feature is f1.

What is the problem, actually? For
example, my new model can assign
some weight to this future, so this
future wi l l be a part of the
prediction formula, and this formula
will be completely unreliable for the
objects with the new values of that
feature. For example, for the last
row in our data set, G row. Even if categorical feature is not constant
on the train path but there were values that present only in the test
set, we need to handle this situation properly. We need to decide, do
these new values matter much or not? For example, we can simulate
this situation with a validation set and compare the quality of the
predictions on the objects with the seen feature values and objects
with the new feature values. Maybe we will decide to remove the

� of �20 36

feature or maybe we will decide to create a separate model for the
object with a new feature values.

Sometimes there are duplicated numerical features that these
two columns are completely identical. In our example data set, these
columns f2 and f3. Obviously, we
should leave only one of those two
features since the other one will not
give any new information to the
model and will only slow down
training. Fro numerical features, it's
easy to check if two columns are the
same. We just can compare them
element wise.

We can a l so have dup l i ca ted
categorical features. The problem is
that the features can be identical but
their levels have different names.
That is it can be possible to rename
levels of one of the features and two
columns will become identical. For
example features f4 and f5. If we
rename levels of the feature f5, C to
A, A to B, and B to C. The result will look exactly as feature f4. But
how do we find such duplicated features? Fortunately, it's quite easy, it
will take us only one more line of code to find them. We need to label
encode all the categorical features first, and then compare them as if
they were numbers. The most important part here is label encoding.
We need to do it right. We need to encode the features from top to
bottom so that the first unique value we see gets label 1, the second
gets 2 and so on. For example for feature f4, we will encode A with 1,
B with 2 and C with 3. Now feature f5 will encode it differently C will
be 1, A will be 2 and B will be 3. But after such encodings columns f4
and f5 turn out to be identical and we can remove one of them.

Another important thing to check is if there are any duplicated rows in
the train and test. If there are a lot of duplicated rows that also have
different target, it can be a sign the competition will be more like a
roulette, and our validation will be different to public leader board

� of �21 36

score, and private standing will be rather random. Another possibility,
duplicated rows can just be the result of a mistake. There was a
competition where one row was repeated 100,000 times in the training
data set. I'm not sure if it was intentional or not, but it was
necessary to remove those duplicated rows to have a high score on the
test set. Anyway, it's better to
explain it to ourselves why do we
observe such duplicated rows?
T h i s i s a p a r t o f d a t a
understanding in fact.
We should also check if train and
t e s t h a v e c o m m o n r o w s .
Some t imes i t c an t e l l u s
someth ing about da ta se t
generation process. And again we
should probably think what could be the reason for those duplicates?
Another thing we can do, we can set labels manually for the test rows
that are present in the train set.
Finally, it is very useful to check that the data set is shuffled, because
if it is not then, there is a high chance to find data leakage. We’ll have
a special topic about date leakages later, but for now we'll just discuss
that the data is shuffled.

What we can do is we can plot a feature or target vector versus row
index. We can optionally smooth the values using running average. On
this slide rolling target value from Quora Question Pairs competition is
plotted while mean target value is
shown with dashed blue line.
If the data was shuffled properly
we would expect some kind of
oscillation of the target values
around the mean target value. But
in this case, it looks like the end of
the train set is much different to
the start, and we have some
patterns. Maybe the information
from this particular plot will not
advance our model. But once again, we should find an explanation for
all extraordinary things we observe. Maybe eventually, we will find
something that will lead us to the first place. Finally, I want to

� of �22 36

encourage you one more time to
visualize every possible thing in a
dataset. Visualizations will lead you to
magic features.

Here's a whole list of topics we've
discussed. You can pause this video
and try to remember what we were
talking about and where.

SpringLeaf Competition I
(NoteBook)

 So in this video, I will go through Springleaf data, it was a competition
on Kaggle. In that competition, the competitors were to predict
whether a client will respond to direct mail offer provided by
Springleaf. So presumably, we'll have some features about
client, some features about offer, and we'll need to predict 1 if he will
respond and 0 if he will not, so let's start. We'll first import some
libraries in here, define some functions, it's not very interesting. And
finally, let's load the data and train our test one, and do a little bit of
data overview. So the first thing we want to know about our data is
the shapes of data tables, so let's bring the train shape, and test that
test shape. What we see here, we have one 150,000 objects, both in

� of �23 36

train and test sets, and about 2000 features in both train and test. And
what we see more than, we have one more feature in train, and as
humans, just target can continue to move the train. So we should just
keep it in mind and be careful, and drop this column when we feed our
models.
1:23
So let's examine training and test, so let's use this function had to
print several rows of both. We see here we have ID column, and
what's interesting here is that I see in training we have values 2, 4, 5,
7, and in test we have 1, 3, 6, 9. And it seems like they are not
overlapping, and I suppose the generation process was as
following. So the organizers created a huge data set with 300,000
rules, and then they sampled at random, rows for the train and for the
test. And that is basically how we get this train and test, and we have
this column IG, it is row index in this original huge file. Then we have
something categorical, then something numeric, numeric again,
categorical, then something that can be numeric or binary. But you see
has decimal part, so I don't know why, then some very strange values
in here, and again, something categorical. And actually, we have a lot
of in between, and yeah, we have target as the last column of the train
set, so let's move on. Probably another thing we want to check is
whether we have not a numbers in our data set, like nonce values, and
we can do it in several ways. And one way we, let's compute how
many NaNs are there for each object, for each row. So this is actually
what we do here, and we print only the values for the first 15
rows. And so the row 0 has 25 NaNs, row 1 has 19 NaN,, and so on,
but what's interesting here, six rows have 24 NaNs. It doesn't look like
we got it in random, it's really unlikely to have these at random. So
my hypothesis could be that the row order has some structure, so the
rows are not shuffled, and that is why we have this kind of
pattern. And that means that we probably could use row index as
another feature for our classifier, so that is it. And the same, we can
do with columns, so for each column, let's compute how many NaNs
are there in each column. And we see that ID has 0 NaNs, then some
0s, and then we see that a lot of columns have the same 56 NaNs. And
that is again something really strange, so either every column
will have 56 NaNs, and so it's not magic, it's probably just how the
things go. But if we know that there are a lot of columns, and every
column have
4:33

� of �24 36

more different number of NaNs, then it's really unlikely to have a lot of
columns
4:40
nearer to each other in the data set with the same number of
NaNs. So probably, our hypothesis could be here that the column
order is not random, so we could probably investigate this.
4:55
So we have about 2,000 columns in this data, and it's a really huge
number of columns. And it's really hard to work with this data set,
and basically we don't have any names, so the data is only mice.
5:09
As I told you, the first thing we can do is to determine the types of the
data, so we will do it here. So we're first going to continue train and
test on a huge data frame like the organizers had, it will have 300,000
rows. And then we'll first use a unique function to determine how
many unique values each column has. And basically here we bring
several values of what we found, and it seems like there are five
columns that have only one unique number. So we can drop the,
basically what we have here, we just find them in this line, and then
we drop them. So next we want to remove duplicated features, but
first, for convenience, fill not a numbers with something that we can
find easily later, and then we do the following. So we create another
data frame of size, of a similar shape as the training set. What we do
we take a column from train set, we apply a label encoder, as we
discussed in a previous video, and we basically store it in this new
train set. So basically we get another data frame which is train, but
label encoded train set. And having this data frame, we can easily find
duplicated features, we just start iterating the features with two
iterators. Basically, one is fixed and the second one goes from the next
feature to the end.
6:56
Then we try to compare the columns, the two columns that we're
standing at, right. And if they are element wise the same, then we
have duplicated columns, and basically that is how we fill up this
dictionary of duplicated columns. We see it here, so we found that
variable 9 is duplicated for input 8, and variable 18 again is duplicated
for variable 8, and so on, and so we have really a lot of duplicates in
here.
7:27

� of �25 36

So this loop, it took some time, so I prefer to dump the results to disk,
so we can easily restore them. So I do it here, and then I basically
drop those columns that we found from the train test data frame. So
yeah, in the second video, we will go through some features and do
some work to data set

SpringLeaf Competition II

So, let's continue exploration. We wanted to determine the types of
variables, and to do that we will first use this nunique function
to determine how many unique values again our feature have. And we
use this dropna=False to make sure this function computes and
accounts for nons. Otherwise, it will not count nun as unique value. It
will just unhit them. So, what we see here that ID has a lot of unique
values again and then we have not so huge values in this series,
r i gh t? So I have 150 ,000 e lements bu t 6 ,000 un ique
elements. 25,000, it's not that a huge number, right? So, let's
aggregate this information and do the histogram of the values from
above. And it's not histogram of these exact values but but it's
normalized values. So, we divide each value by the number of rows in
the tree. It's the maximum value of unique values we could possibly
have. So what we see here that there are a lot of features that have a
few unique values and there are several that have a lot, but not so
much, not as much as these. So these features have almost in every
row unique value. So, let's actually explore these. So, ID essentially is
having a lot of unique values. No problem with that. But what is
this? So what we actually see here, they are integers. They are huge
numbers but they're integers. Well, I would expect a real, nunique
variable with real values to have a lot of unique values, not integer
type variable. So, what could be our guess what these variables
represent? Basically, it can be a counter again. But what else it could
be? It could be a time in let's say milliseconds or nanoseconds or
something like that. And we have a lot of unique values and no
overlapping between the values because it's really unlikely to have two
events or two rows in our data set having the same time, let's say it's
time of creation and so on, because the time precision is quite
good. So yeah, that could be our guess. So next, let's explore this
group of features. Again with some manipulations, I found them and
these are presented in this table. So, what's interesting about

� of �26 36

this? Actually, if you take a look at the names. So the first one is 541.
And the second one is 543. Okay. And then we have 1,081 and
1,082, so you see they are standing really close to each other. It's
really unlikely that half of the row, if the column order was random, if
the columns were shuffled. So, probably the columns are grouped
together according to something and we could explore this
something. And what's more interesting, if we take a look at the
values corresponding to one row, then we'll find that'll say this value is
equal to this value. And this value is equal to this value and this
value, and this is basically the same value that we had in here. So, we
have five features out of four of this having the same value. And if you
examine other objects, some of them will have the same thing
happening and some will not. So, you see it could be something that is
really essential to the objects and it could be a nice feature that
separates the objects from each other. And, it's something that we
should really investigate and where we should really do some feature
engineering. So, for say [inaudible] , it will be really hard to find those
patterns. I mean, it cannot find. Well, it will struggle to find that two
features are equal or five features are equal. So, if we create or say
feature that will calculate how many features out of these, how many
features we have have the same value say for the object zero where
we'll have the value five in this feature and something for other
rows, then probably this feature could be discriminative. And then we
can create other features, say we set it to one if the values in this
column, this and this and this and this are the same and zero to
otherwise, and so on. And basically, if you go through these rows, you
will find that the patterns are different and sometimes the values are
the same in different columns. So for example, for this row, we see
that this value is equal to this value. And this value is different to
previous ones but its equal to this one. And it's really fascinating, isn't
it? And if it actually will work and improve the model, I will be
happy. And another thing we see here is some strange values and they
look like nons. I mean, it's something that a human typed in or a
machine just autofilled. So, let's go further. Oh, yeah. And the last
thing is just try to pick one variable from this group and see what
values does it have. So, let's pick variable 15 and here's its
values. And minus 999 is probably how we've filled in the nons. And
yeah, we have 56 of them and all other values are non-negative, so
probably it's counters. I mean, how many events happened in, I don't
know, in the month or something like that. Okay. And finally, let's filter

� of �27 36

the columns and then separate columns into categorical and
numeric. And i t 's real ly easy to do using this funct ion
select_dtypes. Basically, all the columns that will have objects type, if
you would use a function dtypes. We think of them as categorical
variables. And otherwise, if they are assigned type integer or float or
something like that, or numeric type then we will think of these
columns as numeric columns. So, we can go through the features one-
by-one as actually I did during the competition. Well, we have 2,000
features in this data set and it is unbearable to go through a feature
one-by-one. I've stopped at about 250 features. And you can find in
my notebook and reading materials if you're interested. It's a little bit
messy but you can see it. So, What we will do here, just several
examples of what I was trying to investigate in data set, let's do the
following. Let's take the number of columns, we computed them
previously. So, we'll now work with only the first 42 columns and we'll
create such metrics. And it looks like correlation matrices and all of
that type of matrices like when we have the features along the y
axis, features along the x axis. Basically, well, it's really huge. Yeah.
And in this case, what we'll have as the values is the number or the
fraction of elements of one feature that are greater than elements of
the second feature. So, for example, this cell shows that all variables
or all values in variable 50 are less than values and variable ID, which
is expected. So, yeah. And it's opposite in here. So, if we see one in
here it means that variable 45, for example, is always greater than
variable 24. And, while we expect this metrics to be somehow
random, if the count order was random. But, in here we see, for
example, these kind of square. It means that every second feature is
greater, not to the second but let's say i+1 feature is greater than the
feature i. And, well it could be that this information is about, for
example, counters in different periods of time. So, for example, the
first feature is how many events happened in the first month. The
second feature is how many events happened in the first two month
and so kind of cumulative values. And, that is why one feature is
always greater than the other. And basically, what information we can
extract from this kind of metrics is that we have this group and we can
generate new features and these features could be, for example, the
difference between two consecutive features. That is how we will
extract, for example, the number of events in each month. So, we'll go
from cumulative values back to normal values. And, well linear models,
say, neural networks, they could do it themselves but tree-based

� of �28 36

algorithms they could not. So, it could be really helpful. So, in
attached to non-book in the reading materials you will see that a lot of
these kind of patterns. So, we have one in here, one in here. The
patterns, well, this is also a pattern, isn't it? And now we will just go
through several variables that are different. So, for example, variable
two and variable three are interesting. If you build a histogram of
them, you will see something like that. And, the most interesting part
here are these spikes. And you see, again, they're not random. There's
something in there. So, if we take this variable two and build there,
well, use this value count's function, we'll have value and how many
times it occurs in this variable. We will see that the values, the top
values, are 12, 24, 36, 60 and so on. So, they can be divided by 12
and well probably, this variable is somehow connected to time, isn't
it? To hours. Well, and what can we do? We want to generate features
so we will generate feature like the value of these variable modular 12
or, for example, value of this variable integer division by 12. So, this
could really help. In other competition, you could build a variable and
see something like that again. And what happened in there, the
organizers actually had quantized data. So, they only had data that in
our case could be divided by 12. Say 12, 24 and so on. But, they
wanted to kind of obfuscate the data probably and they added some
noise. And, that is why if you plot an histogram, you will still see the
spikes but you will also see something in between the spikes. And so,
again, these features in that competition they work quite well and
you could dequantize the values and it could really help. And the same
is happening with variable 3 basically, 0, 12, 24 and so on. And
variable 4, I don't have any plot for variable 4 itself in here but
actually we do the same thing. So, we take variable 4, we create a
new feature variable 4 modulus 50. And now, we plot this kind of
histogram. What you see here is light green, there are actually two
histograms in there. The first one for object from the class 0 and the
second one for the objects from class 1. And one is depicted with light
green and the second one is with dark green. And, you see these other
values. And, you see only difference in these bar, but, you see the
difference. So, it means that these new feature variable 4 modulus 50
can be really discriminative when it takes the value 0. So, one could
say that this is kind of, well, I don't know how to say that., I mean,
certain people would never do that. Like, why do we want to take away
modular 50? But, you see sometimes this can really help. Probably
because organizers prepare the data that way. So, let's get through

� of �29 36

categorical features. We have actually not a lot of them. We have
some labels in here, some binary variables. I don't know what is
this, this is probably is some problems with the encoding I have. And
then, we have some time variables. This is actually not a time. Time.
Not a time. Not a time. This is time. Whoa, this is interesting. This
looks like cities, right? Or towns, I mean, city names. And, if you
remember what features we can generate from geolocation, it's the
place to generate it. And, then again, it was some time, some labels
and once again, it's the states. Isn't it? So, again, we can generate
some geographic features. But particularly interesting, the features are
the date. Dates that we had in here. And basically, these are all the
columns that I found having the data information. So, it was one of
the best features for this competition actually. You could do the
following, you could do a scatter plot between two date features to
particular date features and found that they have some relation, and,
one is always greater than another. It means that probably these are
dates of some events and one event is happening always after the first
one. So, we can extract different features like the difference between
these two dates. And in this competition, it really helped a lot. So, be
sure to do exploratory data analysis and extract all the powerful
features like that. Otherwise, if you don't want to look into the
data, you will not find something like that. And, it's really interesting.

Numeri EDA
Here I will tell you about the specifics of Numerai Competition that was
held throughout year 2016. Note that Numerai organizers changed the
format in 2017. So, the findings I'm going to read will not work on new
data. Let's state the problem.
Participants were solving a binary
classification task on a data set with
21 anonymized numeric features.
Unusual part is that both train and
test data sets have been updating
every week. Data sets were also
shuffled column-wise. So it was like a
new task every week. Pretty challenging. As it turned out, this
competition had a data leak. Organizers did not disclose any

� of �30 36

information about the nature of
data set. But allegedly, it was
some time series data with target
variable highly dependent on
transitions between time points.
T h i n k o f s o m e t h i n g l i k e
predicting price change in stock
market here. Means that, if we
k n e w t r u e o r d e r o r h a d
timestamp variable, we could easily get nearly perfect score. And
therefore, we had to somehow reconstruct this order. Of course,
approximately. But even a rough approximation was giving a huge
advantage over other participants. The first and most important step is
to find a nearest neighbor for every point in a data set, and add all 21
features from that neighbor to original point. Simple logistic regression
of those 42 features, 21 from original, and 21 from neighboring points,
allowed to get into top 10 on the
leader board. Of course, we can
get better scores with some
hardcore EDA. Let 's start
exploring correlation matrix of
new 21 features. If group
features with highest correlation
coefficient next to each other,
we'll get a right picture. This
picture can help us in two
different ways. First, we can
actually fix some column order. So, weekly column shuffling won't
affect our models.
And second, we can clearly notice seven
groups with three highly correlated features
in each of them. So, the data actually has
some non-trivial structure. Now, let's
remember that we get new data sets every
week. What is more? Each week, train data
sets have the same number of points. We
can assume that there is some connection
between consecutive data sets. This is a
little strange because we already have a time series. So, what's the
connection between the data from different weeks? Well, if we find

� of �31 36

nearest neighbors from
every point in current data
set from previous data set,
a n d p l o t d i s t a n c e
distributions, we can notice
that first neighbor is much,
m u c h c l o s e r t h a n t h e
second. So, we indeed have
some connection between
consecutive data sets.

And it looks like we can build a bijective mapping between them. But
let's not quickly jump into conclusions and do more exploration. Okay.
We found a nearest neighbor in previous data set. What if we examine
the distances between the neighboring objects at the level of individual
features? We clearly have three different groups of seven
features. Now remember, the sorted correlation matrix? It turns out
that each of three highly correlated features belong to a different
group. A perfect match. And if we multiply seven features from the
first group by three, and seven features from the second group by two
in the original data set, recalculate nearest neighbor-based features
within the data sets, and re-train our models, we'll get a nice
improvement. So, after this magic multiplications, of course, I'd tried
other constants, our true order approximation became a little better.

Great. Now, let's move to the true relation. New data, weekly updates,
all of it was a lie. Remember, how we were calculating neighbors
between consecutive data sets? Well, we can forget about
consecutiveness. Calculate neighbors between current data set, and
the data set from two weeks ago or two months ago. No matter what,
we will be getting pretty much the same distances. Why? The simplest
answer is that the data actually didn't change. And every week, we
were getting the same data, plus a little bit of noise. And thus, we
could find nearest neighbor in each of previous data sets, and average
them all, successfully reducing the variance of added noise. After
averaging, true order approximation became even better. I have to say
that a little bit of test data actually did change from time to time. But
nonetheless, most of the roles migrated from week to week. Because
of that, it was possible to probe the whole public leader board which
helped even further, and so on. Of course, there are more details

� of �32 36

regarding that competition, but they aren't very interesting. I wanted
to focus on the process of reverse engineering. Anyway, I hope you
like this kind of detective story and realized how important exploratory
data analysis could be.

Validation and OverFitting

This isn't the rare case in competitions when you see people jumping
down on leaderboard after revealing private results. So, we ask
ourselves, what is happening out there?

There are two main reasons for these jumps. First, competitors could
ignore the validation and select the submission which scored best
against the public leaderboard. Second, is that sometimes
competitions have no consistent public/private data split or they have
too little data in either public or private leaderboard. Well, we as
participants, can't influence competitions organization. We can
certainly make sure that we select our most appropriate submission to
be evaluated by private leaderboard.

So, the whole goal of next videos is to provide you a systematic way to
set up validation in a competition, and tackle most common validation
problems.

Let's quickly overview of the content of the next videos. First, in this
video, we will understand the concept of validation and overfitting. In
the second video, we will identify the number of splits that should be
done to establish stable validation. In the third video, we will go
through most frequent methods which are used to make train/test split
in competitions. In the last video, we will discuss most often validation
problems.

Now, let me start to explain the concept for validation for those who
may never heard of it. In a nutshell, we want to check if the model
gives expected results on the unseen data. For example, if you've
worked in a healthcare company which goal is to improve life of
patients, we could be given the task of predicting if a patient will be
diagnosed a particular disease in the near future. Here, we need to be

� of �33 36

sure that the model we train will be applicable in the future. And not
just applicable, we need to be sure about what quality this model
will have depending on the number of mistakes the model make. And
on the predictive probability of a patient having this particular
disease, we may want to decide to run special medical tests for the
patient to clarify the diagnosis. So, we need to correctly understand
the quality of our model. But, this quality can differ on train data from
the past and on the unseen test data from the future. The model could
just memorize all patients from the train data and be completely
useless on the test data because we don't want this to happen. We
need to check the quality of the model with the data we have and
these checks are the validation.
So, usually, we divide data we
have into two parts, train part and
validation part. We fit our model
on the train part and check its
quality on the validation part.
Beside that, in the last example,
our model will be checked against the unseen data in the future and
actually these data can differ from the data we have.

So we should be ready for this. In competitions, we usually have the
similar situation. The organizers of a competition give us the data in
two chunks. First, train data with all target values. And second, test
data without target values. As in the previous example, we should split
the data with labels into train and validation parts. Furthermore, to
ensure the competition spirit, the organizers split the test data into the
public test set and the private test set. When we send our submissions
to the platform, we see the scores for the public test set while the
scores for the private test set are released only after the end of the
competition.
This also ensures that we don't need the test set or in terms of a
model do not overfit. Let me draw you an analogy with the disease
projection, if we already divided our data into train and validation
parts. And now, we are repeatedly checking our model against the
validation set, some models, just by chance, will have better scores
than the others.
If we continue to select best models, modify them, and again select
the best from them, we will see constant improvements in the
score. But that doesn't mean we will see these improvements on the

� of �34 36

test data from the future. By repeating this over and over, we could
just achieve the validation set or in terms of a competition, we could
just cheat the public leaderboard. But again, if it overfit, the private
leaderboard will let us down. This is what we call overfitting in a
competition. Get an unrealistically good scores on the public
leaderboard that later result in jumping down the private
leaderboard. So, we want our model to be able to capture patterns
in the data but only those patterns that generalize well between both
train and test data.

Let me show you this process in terms of under-fitting and
overfitting. So, to choose the best model, we basically want to avoid
under-fitting on the one side and overfitting on the other. Let's
understand this concept on a very simple example of a binary
classification test. We will be using simple models defined by formulas
under the pictures and visualize the results of model's predictions.
Here on the left picture, we can see that if the model is too simple, it
can’t capture underlined relationship and we will get poor results. This
is called under-fitting. Then, if we want our results to improve, we can
increase the complexity of the model and that will probably find that
quality on the training data is going down. But on the other hand, if we
make too complicated model like
on the right picture, it will start
describing noise in the train data
that doesn't generalize the test
data. And this will lead to a
decrease of model's quality. This
is called overfitting. So, we want
something in between under-
fitting and overfitting here.

And for the purpose of choosing the most suitable model, we want to
be able to evaluate our results. Here, we need to make a remark, that
the meaning of overfitting in machine learning in general and the
meaning of overfitting competitions in particular are slightly different.

In general, we say that the model is overfitted if its quality on the train
set is better than on the test set. But in competitions, we often
say, that the models are overfitted only in case when quality on the
test set will be worse than we expected. For example, if you train

� of �35 36

gradient boosting decision tree in a competition with area under a
curve metric, we sometimes can observe that the quality on the
training data is close to 1 while on the test data, it could be less for
example, near 0.9. In general sense, the models overfitted here but
while we get area under curve was 0.9 on both validation and public/
private test sets, we will not say that it is overfitted in the context of a
competition.

Let me illustrate this concept again in a bit different way. So, lets say
for the purpose of model evaluation, we divided our data into two
parts. Train and validation parts. Like we already did, we will derive
model's complexity from low to high and look at the models
here. Note, that usually, we understand error or loss is something
which is opposite to model's quality or score. In the figure, the
dependency looks pretty reasonable. For two simple models, we have
under-fitting which means higher on both train and validation. For two
complex models, we have overfitting which means low error on train
but again high error on validation. In the middle, between them, if the
perfect model's complexity, it has the lowest train on the validation
data and thus we expect it to have the lowest error on the unseen test
data. Note, that here the training error is always better than the test
error which implies overfitting in general sense, but doesn't apply in
the context of competitions. Well done. In this video, we define
validation, demonstrated its purpose, and interpreted validation in
terms of under-fitting and overfitting. So, once again, in general, the
validation helps us answer the question, what will be the quality of our
model on the unseeing data and help us select the model which will be
expected to get the best quality on
that test data. Usually, we are trying
to avoid under-fitting on the one side
that is we want our model to be
expressive enough to capture the
patterns in the data. And we are
trying to avoid overfitting on the other
side, and don't make too complex
model, because in that case, we will
start to capture noise or patterns that
doesn't generalize to the test data.

� of �36 36

