
Decision Trees, Bagging, Boosting,
Random Forest and Extra-Trees

1 Bootstrap
The bootstrap is a general tool for assessing statistical accuracy. First we describe the
bootstrap in general, and then show how it can be used to estimate extra-sample prediction
error.

Suppose we have a model fit to a set of training data. We denote the training set by
Z = (z1, z2, ..., zN) where zi = (xi, yi). The basic idea is to randomly draw datasets with
replacement from the training data, each sample the same size as the original training set.
This is done B times (B = 100 say), producing B bootstrap datasets. Then we refit the
model to each of the bootstrap datasets, and examine the behavior of the fits over the B
replications.

2 Bootstrap Aggregation, i.e. Bagging
How to use the bootstrap to improve the estimate or prediction itself?

Consider first the regression problem. Suppose we fit a model to our training data
Z = (x1, y1), (x2, y2), ..., (xN , yN) , obtaining the prediction f̂(x) at input x. Bootstrap ag-
gregation or bagging averages this prediction over a collection of bootstrap samples, thereby
reducing its variance. For each bootstrap sample Z∗b, b = 1, 2, · · · , B, we fit our model,
giving prediction f̂ ∗b(x). The bagging estimate is defined by

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x)

The bagged estimate above will differ from the original estimate f̂(x) only when the
latter is a nonlinear or adaptive function of the data.

Bagging is a method for reducing the variance of an estimated prediction function. Bag-
ging works well for high-variance, low-bias procedures, such as trees. (It is not specific o
trees, it could be applied to regression models, B-Splines, etc.)

For regression tree we simply fit the same regression tree many times too bootstrap
sampled versions of training data and average the result. For classification a committee of
trees, each cast a vote for the predicted class.

1



3 Boosting
The motivation for boosting was a procedure that combines the outputs of many “weak”
classifiers to produce a powerful “committee.” From this perspective boosting bears a re-
semblance to bagging and other committee-based approaches. However we shall see that the
connection is at best superficial and that boosting is fundamentally different.

Lets explain boosting with the famous model of AdaBoost.
Consider a two-class problem, with the output variable coded as Y ∈ {−1, 1}. Given a

vector of predictor variables X, a classifier G(X) produces a prediction taking one of the
two values {−1, 1}. The error rate on the training sample is

err =
1

N

N∑
i=1

I(yi 6= G(xi))

A weak classifier is one whose error rate is only slightly better than random guessing. The
purpose of boosting is to sequentially apply the weak classification algorithm to repeatedly
modified versions of the data, thereby producing a sequence of weak classifiers Gm(x),
m = 1, 2, ...,M. The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction:

G(x) = sign

 M∑
m=1

αmGm(x)


Here α1, α2, ..., αM are computed by the boosting algorithm, and weight the contribution

of each respective Gm(x). Their effect is to give higher influence to the more accurate
classifiers in the sequence.

The data modifications at each boosting step consist of applying weights w1, w2, /cdots, wN

to each of the training observations (xi, yi), i = 1, 2, ..., N . Initially all of the weights are
set to wi = 1/N , so that the first step simply trains the classifier on the data in the usual
manner. For each successive iteration m = 2, 3, ...,M the observation weights are individu-
ally modified and the classification algorithm is reapplied to the weighted observations. At
step m, those observations that were misclassified by the classifier Gm−1(x) induced at the
previous step have their weights increased, whereas the weights are decreased for those that
were classified correctly. Thus as iterations proceed, observations that are difficult to clas-
sify correctly receive ever-increasing influence. Each successive classifier is thereby forced to
concentrate on those training observations that are missed by previous ones in the sequence.
(please take a look at reffig:AdaBoost)

4 RandomForest
Random forests is a substantial modification of bagging that builds a large collection of de-
correlated trees, and then averages them. On many problems the performance of random
forests is very similar to boosting, and they are simpler to train and tune.

2



Figure 1: AdaBoost Algorithm

The essential idea in bagging is to average many noisy but approximately unbiased mod-
els, and hence reduce the variance. Trees are ideal candidates for bagging, since they can
capture complex interaction structures in the data, and if grown sufficiently deep, have rel-
atively low bias. Since trees are notoriously noisy, they benefit greatly from the averaging.
Moreover, since each tree generated in bagging is identically distributed (i.d.), the expecta-
tion of an average of B such trees is the same as the expectation of any one of them. This
means the bias of bagged trees is the same as that of the individual trees, and the only hope
of improvement is through variance reduction. This is in contrast to boosting, where the
trees are grown in an adaptive way to remove bias, and hence are not i.d.

An average of B i.i.d. random variables, each with variance σ2, has variance 1
B
σ2. If

the variables are simply i.d. (identically distributed, but not necessarily independent) with
positive pairwise correlation ρ, the variance of the average is

ρσ2 +
1− ρ
B

σ2 (1)

As B increases, the second term disappears, but the first remains, and hence the size of
the correlation of pairs of bagged trees limits the benefits of averaging. The idea in random
forests is to improve the variance reduction of bagging by reducing the correlation between
the trees, without increasing the variance too much. This is achieved in the tree-growing
process through random selection of the input variables.

Specifically, when growing a tree on a bootstrapped dataset:

Before each split, select m ≤ p of the input variables at random as candidates for splitting.

Typically values for m are √p or even as low as 1.

3



After B such trees
{
T (x; Θb)

}B
1
are grown, the random forest (regression) predictor is

f̂B
rb =

1

B

B∑
b=1

T (x; Θb)

Θb characterizes the bth random forest tree in terms of split variables, cutpoints at each
node, and terminal-node values. Intuitively, reducing m will reduce the correlation between
any pair of trees in the ensemble, and hence by Eq. 1 reduce the variance of the average.

Not all estimators can be improved by shaking up the data like this. It seems that highly
nonlinear estimators, such as trees, benefit the most.

Figure 2: Random Forest Algorithm

5 ExtraTrees
[2]: The Extra-Trees algorithm builds an ensemble of unpruned decision or regression trees
according to the classical top-down procedure. Its two main differences with other tree-
based ensemble methods are that it splits nodes by choosing cut-points fully at random
and that it uses the whole learning sample (rather than a bootstrap replica) to grow the
trees.

References
[1] Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome The Elements of Statis-

tical Learning.

4



[2] Geurts, Pierre and Ernst, Damien and Wehenkel, Louis Extremely randomized trees
Published online: 2 March 2006 Springer Science + Business Media, Inc. 2006

5


	Bootstrap
	Bootstrap Aggregation, i.e. Bagging
	Boosting
	RandomForest
	ExtraTrees

