
Mahalanobis distance explained

1 Diagonalizability
Let X be a matrix whose rows are variables and columns are observations that are centered
about the mean. Then the covariance of the X is given by

Σ = cov(X) =
1

n− 1
XXT (1)

Assume we want to have a mapping M so that Y = MTX has covariance that is diagonal.
Then

• Assume there is no observation with all zero values

• Assume there is no two identical observations, i.e.columns are linearly independent.

• (Rare) things like that which will make covariance matrix singular.

Then since covariance matrix is symmetric, with positive entries, etc., it is diagonalizable,
i.e. it can be written as

Σ = U−1DU = UTDU (2)

or equivalently

UTΣU = D (3)

where D is diagonal and, in this case due to properties of covariance matrix, the matrix
U is orthogonal, i.e. U−1 = UT, i.e. UUT = I

The columns of U−1 are eigenvectors of covariance matrix, entries of D are eigenvalues
of covariance matrix, which are also variances of different variables in X.

Assume we want to rotate the data, or represent them in a coordinate system where it
is represented with variables that are orthogonal, i.e. the collinearity is killed. This is what
PCA does.

Now lets pretend we do not know that. Lets say we want to transform X into Y by a
mapping MT, i.e. Y = MTX, so that covariance of Y is diagonal matrix, D̂.
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So, we want cov(Y) = 1
n−1

YYT, Lets take a look:

D̂ = cov(Y) =
1

n− 1
YYT

=
1

n− 1
MTX(MTX)T

=
1

n− 1
MTXXTM

= MTΣM

(4)

So, we arrived at D̂ = MTΣM. Hence, if you choose M to be the same as U, then
covariance of Y would be diagonal, and you have D̂ = D.

Since, the the decomposition given by Eq. (2) is eigen-decomposition of Σ, we can see
this is what PCA does.

2 Equivalency
Definition 2.1. Suppose the random vectors of v and w be drawn from a distribution whose
associated covariance matrix is given by Σ. Then define the Malanoblis distance as follows:

d = (v − w)TΣ−1(v − w) (5)

Lets take a look:

d = (v − w)TΣ−1(v − w)

= (v − w)T(UTDU)−1(v − w)

= (v − w)T(U−1D−1U−T)(v − w)

= (v − w)T(UTD−1U)(v − w)

= (U(v − w))TD−1(U(v − w))

(6)

Notice:

• The diagonal entries of D eigenvalues of covariance matrix, which are variance of
variables in X. So, if the data in X was scaled by their variances, then this distance
was equivalent to Euclidean distance.

• Lets look at the last term in above equation:

U(v − w) = Uv − Uw (7)

Each of these terms are mappings of v and w into the PCA space of the data X.

Suppose x is a vector and we wish to represent it, in the column space of a matrix
A = [A1,A2, . . .AN ], where each Ai is a column of A. So, we are looking for constants
y1, y2, . . . , yN so that
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x = y1A1 + y2A2 · · ·+ ANyN = Ay

Hence, y = A−1X. So, y is the mapping of x into column space of A. Just like Uv which
is mapping of v into column space of U−1 whose columns are eigenvectors of covariance, i.e.
PCA.
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