
Week 1 
Feature preprocessing 
Each type of feature has its own ways to be preprocessed in order to 
improve quality of the model. In other words, choice of preprocessing 
matter, it depends on the model we're going to use. For example, let's 
suppose that target has nonlinear dependency on the pclass feature. 
Pclass linear of 1 usually leads to 
target of 1, 2 leads to 0, and 3 
leads to 1 again. Clearly, because 
this is not a linear dependency , 
linear model cannot get a good 
result here. So in order to improve 
a linear model's quality, we would 
want to preprocess pclass feature in 
some way. For example, with the 
so-called one-hot-encoding. The 
linear model will fit much better 
now than in the previous case. 
However, random forest does not require this feature to be 
transformed at all. Random forest can easily put each pclass in 
separately and predict fine probabilities. So, that was an example of 
preprocessing. The second reason why we should be aware of different 
feature types is to ease generation of new features. Feature types 
differ in this and comprehends in common feature generation 
methods. While gaining an ability to improve your model through 
them. Also understanding of basics of feature generation will aid you 
greatly in upcoming advanced feature topics from our course.  

As in the first point, understanding of a model here can help us to 
create useful features. Let me show you an example. Say, we have to 
predict the number of apples a shop will sell each day next week and 
we already have a couple of months sales history as training data.  

Let's consider that we have an obvious linear trend through out the 
data and we want to inform the model about it. To provide you a visual 
example, we prepare the second table with last days from train and 
first days from test.  
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One way to help model to  
utilize linear trend is to add 
feature indicating the week 
number passed. With this 
feature, linear model can 
successfully find an existing 
linear and dependency. 

On the other hand, a gradient boosted decision tree will use this 
feature to calculate something like mean target value for each 
week. Here, I calculated mean values manually and placed them in the 
data frame. We're going to predict number of apples for the sixth 
week. 

Note that we indeed have linear trend here. So let's plot how a 
gradient within the decision tree will split the week feature.  

As we do not train Gradient Boosting decision tree on the sixth week, it 
will not put splits between the fifth and the sixth weeks, then, when 
we will predict the numbers for the 6th week, the model will end up 
using the value from the 5th week. As 
we can see unfortunately, no users 
shall land their linear trend here. And 
vise versa, we can come up with an 
example of generated feature that will 
be beneficial for gradient boosting 
decisions tree and useless for linear 
model. So this example shows us, that our approach to 
feature generation should rely on understanding of employed 
model. To summarize this video, first, feature preprocessing is 
necessary instrument you have to use to adapt data to your model. 
Second, feature generation is a very powerful technique which can aid 
you significantly. And at last, both feature preprocessing and feature 
generation depend on the model you are going to use. So these three 
topics, in connection to feature types, will be general theme of the 
next videos. We will thoroughly examine most frequent methods which 
you can be able to incorporate in your solutions.  
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Numeric Preprocessing 
Here, we will cover basic approach as to feature preprocessing and 
feature generation for numeric features. We will understand how 
model choice impacts feature preprocessing. We will identify the 
preprocessing methods that are used most often, and we will discuss 
feature generation and go through several examples. Let's start with 
preprocessing.  

First thing you need to know about handling numeric features is that 
there are models which do and don’t depend on feature scale. For now, 
we will broadly divide all models into tree-based models and non-tree-
based models. For example, decision trees classifier tries to find the 
most useful split for each feature, and it won't change its behavior and 
its predictions if we multiply the features by a constant and to retrain 
the model.  

On the other side, there are models which depend on these kind of 
transformations. The model based on nearest neighbors, linear 
models, and neural network. Let's consider the following example. We 
have a binary classification task with two features. The object in the 
picture belong to di f ferent 
classes. The red circle to class 
zero, and the blue cross to class 
one, and finally, the class of the 
green object is unknown. Here, 
we wil l use a one nearest 
neighbor’s model to predict the 
class of the green object. We will 
measure distance using square 
distance.  

Now, if we calculate distances to 
the red circle and to the blue 
cross, we will see that our model 
will predict class one for the green 
object because the blue cross of class one is much closer than the red 
circle. But if we multiply the first feature by 10, the red circle will 
became the closest object, and we will get an opposite prediction. Let's 
now consider two extreme cases.  
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What will happen if we multiply the first feature by zero and by one 
million? If the feature is multiplied by zero, then every object will have 
feature relay of zero, which results in KNN ignoring that feature. On 
the opposite, if the feature is multiplied by one million, slightest 
differences in that features values will impact prediction, and this will 
result in KNN favoring that feature over all others.  

Great, but what about other models? Linear models are also 
experience difficulties with differently scaled features. First, we want 
regularization to be applied to linear models coefficients for features in 
equal amount. But in fact, regularization impact turns out to be 
proportional to feature scale. And second, gradient descent methods 
can go crazy without a proper scaling. Due to the same reasons, 
neural networks are similar to linear models in the requirements for 
feature preprocessing.  

It is important to understand that different features scalings result in 
different models quality. In this sense, it is just another hyper 
parameter you need to optimize. The easiest way to do this is to 
rescale all features to the same scale. For example, to make the 
minimum of a feature equal to 0 and the maximum equal to 1, you can 
achieve this in two steps. First, we subtract the minimum value. And 
then, we divide the difference by the range. It can be done with 
MinMaxScaler from sklearn. Let's illustrate this with an example. We 
apply the so-called MinMaxScaler to two features from the detaining 
dataset, Age and SibSp. Looking 
at histograms, we see that the 
features have different scale, 
age is between 0 and 80, while 
SibSp is between 0 and 8. Let's 
apply MinMaxScaling and see 
what it will do. Indeed, we see 
that after this transformation, 
both age and SibSp features 
were successfully converted to 
the same range of (0,1).  

Note that distributions of values 
which we observe from the histograms didn't change. To give you 
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another example, we can apply a scalar named StandardScaler in 
sklearn, which basically first subtracts mean value from the feature, 
and then divides the result by feature 
standard deviation. In this way, we'll get 
standardized distribution, with a mean of 0 
and standard deviation of 1. After either of 
MinMaxSca l ing or StandardSca l ing 
transformations, features impacts on non-
tree-based models will be roughly similar.  

Even more, if you want to use KNN, we can go one step further and 
recall that the bigger the feature is, the more important it will be for 
KNN. So, we can optimize scaling parameter to boost features which 
seems to be more important for us and see if this helps.  

When we work with linear models, there is another important moment 
that influences model’s results. I'm talking about outliers. For example, 
in this plot, we have one feature, X, and a target variable, Y. If you fit 
a simple linear model, its predictions can look just like the red line. But 
if you do have one outlier with X feature equal to some huge value, 
predictions of the linear model will look more like the purple line. The 
same holds, not only for features values, but also for target values. For 
example, let's imagine we have a model trained on the data with 
target values between 0 and 1. Let's think what happens if we add a 
new sample in the training data with a target value of 1,000. When we 
retrain the model, the model will predict abnormally high values. 
Obviously, we have to fix this somehow. To protect linear models from 
outliers, we can clip 
f e a t u r e s v a l u e s 
between two chosen 
values of lower bound 
and upper bound. We 
can choose them as 
some percentiles of 
t h a t f e a t u r e . F o r 
example, first and 99s 
p e r c e n t i l e s . T h i s 
procedure of clipping is 
well-known in financial 
data and it is called winsorization.  
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Let's take a look at this histogram for an example. We see that the 
major i ty o f feature 
values are between zero 
and 400. But there is a 
number of outliers with 
values around -1,000. 
They can make life a lot 
harder for our nice and 
simple linear model. 
Let's clip this feature's 
value range, and to do 
s o , f i r s t , w e w i l l 
calculate lower bound 
and upper bound values 
as features values at 
first and 99th percentiles. After we clip the features values, we can see 
that features distribution looks fine, and we hope now this feature will 
be more useful for our model.  

Another effective preprocessing for numeric features is the rank 
transformation. Basically, it sets spaces between proper assorted 
values to be equal. This transformation, for example, can be a better 
option than MinMaxScaler if we have outliers, because rank 
transformation will move the outliers closer to other objects. Let's 
understand rank using this example. If we apply a rank to the sorted 
of array, it will just change values to their 
indices. Now, if we apply a rank to the 
not-sorted array, it wil l sort this 
array, define mapping between values 
and indices in this sorted of array, and 
apply this mapping to the initial array. Linear models, KNN, and neural 
networks can benefit from this kind of transformation if we have no 
time to handle outliers manually. Rank can be imported as a random 
data function from scipy. One more important note about the rank 
transformation is that to apply it to the test data, you need to store 
the created mapping from features values to their rank values. Or 
alternatively, you can concatenate, train, and test data before applying 
the rank transformation.  
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There is one more example of numeric features preprocessing which 
often helps non-tree-based models and especially neural networks. 
You can apply log transformation through your 
data, or there's another possibility. You can 
extract a square root of the data. Both these 
transformations can be useful because they 
drive too big values closer to the features' 
average value. Along with this, the values 
n e a r 0 a r e b e c o m i n g a b i t m o r e 
distinguishable. Despite the simplicity, one of 
these transformations can improve your neural network's results 
significantly.  

Another important moment which holds true for all preprocessing is 
that sometimes it is beneficial to train a model on concatenated data 
frames produced by different preprocessing, or to mix models trained  
on differently-preprocessed data. Again, linear models, KNN, and 
neural networks can benefit hugely from this.  

To this end, we have discussed numeric feature preprocessing, how 
model choice impacts feature preprocessing, and what are the most 
commonly used preprocessing methods.  

Let's now move on to feature generation. Feature generation is a 
process of creating new features using knowledge about the features 
and the task. It helps us by making model training more simple and 
effective. Sometimes, we can engineer these features using prior 
knowledge and logic. Sometimes we have to dig into the data, create 
and check hypothesis, and use this derived knowledge and our 
intuition to derive new features. Here, we will discuss feature 
generation with prior knowledge, but as it turns out, an ability to dig 
into the data and derive insights is what makes a good competitor a 
great one. We will thoroughly analyze and illustrate this skill in the 
next lessons on exploratory data analysis. For now, let's discuss 
examples of feature generation for numeric features. First, let's start 
with a simple one.  

If you have columns: Real Estate price and Real Estate squared area in 
the dataset, we can quickly add one more feature, price per meter 
square. Easy, and this seems quite reasonable. Or, let me give you 
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another quick example from the Forest Cover Type Prediction 
dataset. If we have a horizontal distance 
to a water source and the vertical 
difference in heights within the point 
and the water source, we as well may 
add combined feature indicating the 
direct distance to the water from this 
point. Among other things, it is useful 
to know that adding, multiplications, 
d i v i s i o n s , a n d o t h e r f e a t u r e s 
interactions can be of help not only for 
linear models. For example, although 
gradient boosting decision tree is a very 
powerful model, it still experiences difficulties with approximation of 
multiplications and divisions. And adding size features explicitly 
can lead to a more robust model with less amount of trees. The third 
example of feature generation for numeric features is also very 
interesting. Sometimes, if we have 
prices of products as a feature, we can 
add new feature indicating fractional 
part of these prices. For example, if 
some product costs 2.49, the fractional 
part of its price is 0.49. This feature 
can help the model ut i l ize the 
differences in people's perception of 
these prices.  
Also, we can find similar patterns in 
tasks which require distinguishing between a human and a robot. For 
example, if we will have some kind of financial data like auctions, we 
could observe that people tend to set round numbers as prices, and 
there are something like 0.935, blah, blah, blah, very long number 
here. Or, if we are trying to find spambots on social networks, we can 
be sure that no human ever write messages with an exact interval of 
one second.  
Great, these three examples should have provided you an idea 
that creativity and data understanding are the keys to productive 
feature generation. Let's summarize this up. In this video, we have 
discussed numeric features.  
First, the impact of feature preprocessing is different for different 
models. Tree-based models don't depend on scaling, while non-tree-
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based models usually depend on them. Second, we can treat scaling 
as an important hyper parameter in cases when the choice of scaling 
impacts predictions quality. And at last, we should remember that 
feature generation is powered by an understanding of the data. 

Ordinal And Categorical 

In particular, what kind of pre-processing will be used for each model 
type of them? What is the difference between categorical and and 
ordinal features and how we can generate new features from them?  
First, let's look at several rows from the Titanic dataset and find 
categorical features here. Their names are: Sex, Cabin and Embarked. 
These are usual categorical features but there is one more special, the 
Pclass feature. Pclass stands for ticket class, and has three unique 
values: 1, 2, and 3. It is ordinal, in other words, ordered categorical 
feature. This basically means that it is ordered in some meaningful 
way. For example, if the first class was more expensive than the 
second, or the more the first should be more expensive than the third. 
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We should make an important note here about differences between 
ordinal and numeric features. If Pclass would have been a numeric 
feature, we could say that the difference between first, and the second 
class is equal to the difference between second and the third class, but 
because Pclass is ordinal, we don't know which difference is bigger. As 
with numeric features, we can't sort and integrate(?) an ordinal 
feature the other way, and expect to get similar performance. Another 
example for ordinal feature is a driver's license type. It's either A, B, 
C, or D. Or another example, level of education, kindergarten, school, 
undergraduate, bachelor, master, and doctoral. These categories are 
sorted in increasingly complex order, which can prove to be useful. The 
simplest way to encode a categorical feature is to map it's unique 
values to different numbers. Usually, people referred to this procedure 
as label encoding. This method works fine with trees because tree-
methods can split feature, and extract most of the useful values in 
categories on its own. Non-tree-
b a s e d - m o d e l s , o n t h e o t h e r 
side, usually can't use this feature 
effectively. And if you want to train 
linear model kNN on neural network, 
you need to treat a categorical 
feature differently. To illustrate this, 
let’s remember example we had in 
the beginning of this topic. What if 
Pclass of 1 usually leads to the target 
of 1, Pclass of 2 leads to 0, and Pclass 
of 3 leads to 1. This dependence is not linear, and linear model will be 
confused. And indeed, here, we can put linear models predictions, and 
see they all are around 0.5. This looks kind of sad but trees on the 
other side, will just make two splits selecting each unique value and 
reaching it independently. Thus, decision trees could achieve much 
better score here using these feature. Let's take another categorical 
feature and again, apply label encoding. Let this be the feature 
Embarked. Although, we didn't have to encode the previous feature 
Pclass before using it in the model. Here, we definitely need to do this 
with embarked. It can be achieved in several ways. First, we can apply 
encoding in the alphabetical or sorted order. Unique way to solve of 
this feature namely S, C, Q, can be encoded as 2, 1, 3. This is called 
label encoder from sklearn works by default. The second way is also 
label encoding but slightly different. Here, we encode a categorical 
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f e a t u r e b y o r d e r o f 
appearance. For example, s 
will change to 1 because it 
was met first in the data. 
Second then c, and we will 
change c to 2. And the last is 
q, which will be changed to 3. 
This can make sense if all 
w e r e s o r t e d i n s o m e 
meaningful way. This is the 
d e f a u l t b e h a v i o r o f  
pandas.factorize function.  

The third method that I will 
te l l you about is ca l led 
frequency encoding. We can 
encode th is feature v ia 
mapping values to their 
frequencies. If 30 percent for 
us embarked is equal to c and 50 to s and the rest 20 is equal to q. We 
can change this values accordingly: c to 0.3, s to 0. 5, and q to 0.2. 
This will preserve some information about values distribution, and can 
help both linear and tree models. The former methods, can find this 
feature useful if value frequency is correlated with target value. While 
the latter models can help with less number of splits because of the 
same reason.  
There is another important moment about frequency encoding. If you 
have multiple categories with the same frequency, they won't be 
distinguishable in this new feature. We might apply rank operation 
here in order to deal with such ties. It is possible to do like this. There 
are other ways to do label encoding, and I definitely encourage you to 
be creative in constructing them.  

We just discussed label encoding, frequency encoding, and why this 
works fine for tree-based-methods. But we also have seen that linear 
models can struggle with label encoded feature. The way to identify 
categorical features to non-tree-based-models is also quite 
straightforward. We need to make new code for each unique value in 
the future, and put one in the appropriate place. Everything else will 
be zeroes. This method is called, one-hot encoding. Let's see how it 
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works on this quick example. So here, for each unique value of Pclass 
feature, we just created a new column. As I said, this works well for 
linear methods, kNN, or neural networks. Furthermore, one -hot 
encoded feature is already scaled because minimum this feature is 0, 
and maximum is 1.  
Note that if you have a few 
important numeric features, 
and hundreds o f b ina ry 
features are used by one-hot 
encoding, it could become 
difficult for tree-methods to 
use first ones efficiently. More 
precisely, tree-methods will 
s l o w d o w n , n o t a l wa y s 
improving their results. Also, 
it’s easy to imply that if 
categorical feature has too many unique values, we will add too many 
new columns with a few non-zero values. To store these new array 
efficiently, we must know about sparse matrices. In a nutshell, instead 
of allocating space in RAM for every element of an array, we can store 
only non-zero elements and thus, save a lot of memory. Going with 
sparse matrices makes sense if number of non-zero values is far less 
than half of all the values. Sparse matrices are often useful when they 
work with categorical features or text data. Most of the popular 
l ibrar ies can work wi th these sparse matr ices d i rect ly 
namely, XGBoost, LightGBM, sklearn, and others.  

After figuring out how to pre-processed categorical features for tree 
based and non-tree based models, we can take a quick look at feature 
generation.  
One of the most useful examples of feature generation is feature 
interaction between several categorical features. This is usually useful 
for non tree based models namely, linear model, kNN. For example, 
let’s hypothesize that target depends on both Pclass feature, and sex 
feature. If this is true, linear model could adjust its predictions for 
every possible combination of these two features, and get a better 
result. How can we make this happen? Let's add this interaction by 
simply concatenating strings from both columns and one-hot encoding 
it. Now linear model can find optimal coefficient for every interaction 
and improve. Simple and effective.  
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More on features interactions 
will come in the following 
weeks especially, in advanced 
features topic.  

Now, let’s summarize this 
features.  
First, ordinal is a special case 
of categorical feature but with 
v a l u e s s o r t e d i n s o m e 
meaningful order.  
S e c o n d , l a b e l e n c o d i n g 
basically replaces unique values 
of categorical features with numbers.  

Third, frequency encoding, maps unique values to their frequencies.  
Fourth, label encoding and frequency encoding are often used for tree-
based methods.  

Fifth, One-hot encoding is often used for non-tree-based-methods.  
And finally, applying One-hot encoding to combinations of categorial 
features allows non-tree-based-models to take into consideration 
interactions between features, and improve. 

We just sorted out it feature pre-process for categorical features, and 
took a quick look on feature generation. Now, you will be able to apply 
these concepts in your next competition and get better results. 
 

�  of �13 24



DateTime and Coordinate 

We will discuss basic feature generation approaches for datetime and 
coordinate features. They both differ significantly from numeric and 
categorical features. Because we can interpret the meaning of 
datetime and coordinates, we can came up with specific ideas about 
future generation which we'll discuss here. Let's start with date-time.  

Date-time is quite a interesting feature because it isn't on the linear 
nature, it also has several different parts like year, day or week. Most 
new features generated from date-
time can be divided into two 
categories. The first one, time 
moments in a period, and the 
second one, time passed since 
particular event. First one is very 
simple. We can add features like 
second, minute, hour, day in a 
week, in a month, on the year and 
so on and so forth.  

This is useful to capture repetitive 
patterns in the data. If we know 
about some non-common periods which influence the data, we can add 
them as well. For example, if we are to predict efficiency of 
medication, but patients receive pills one time every three days, we 
can consider this as a special time period.  

Now, Time since particular event.  

This event can be either row-independent or row-dependent. In the 
first case, we just calculate time passed from one general moment 
for all data. For example, from here to thousand. Here, all samples will 
become comparable between each other on one time scale.  

As the second variant of time_since_particular_event, that date will 
depend on the sample we are calculating this for. For example, if we 
are to predict sales in a shop, like in the ROSSMANN's store sales 
competition. We can add the number of days passed since the last 
holiday, weekend or since the last sales campaign, or maybe the 
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number of days left to these 
events. So, after adding these 
features, our data_frame can 
look like this.  

Date is obviously a date, and 
sales are the target of this 
task, while other columns are 
generated features. Week day 
feature indicates which day in 
the week is this, daynumber 
_since_year_2014 indicates 
how many days have passed 
since January 1st, 2014. 
is_holiday is a binary feature 
indicating whether this day is a 
holiday and days_till_holidays 
indicate how many days are left 
b e f o r e t h e c l o s e s t h o l i d ay. 
Sometimes we have several date-
time columns in our data. The most 
straightforward idea here is to subtract one feature from another. Or 
perhaps subtract the generated features, like the one, we just have 
discussed. 

Time moment inside the period or time passed in row dependent 
events. One simple example of such generation can be found in churn 
prediction task. Basically churn prediction is about estimating the 
likelihood that customers will churn.  

We may receive a valuable feature here by subtracting user 
registration date from the date of some action of his, like purchasing a 
product, or calling to the 
customer service. We can 
see how this works on this 
data_frame. For every user, 
we know last_purchase_date 
and last_call_date. Here we 
add the difference between 
them as new feature named 
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date_diff. For clarity, let's 
take a look at this figure. For 
every user, we have his 
last_purchase_date and his 
last_call_date. Thus, we can 
add date_diff feature which 
indicates number of days 
between these events. Note 
that after generation features 
from date-time, you usually will get either numeric features like time 
passed since the year 2000, or categorical features like day of week. 
And these features now need to be treated accordingly with necessary 
pre-processing we have discussed earlier.  

Now having discussed feature 
generation for date-time, let's move 
on to f ea tu re gene ra t i on f o r 
coordinates. Let's imagine that we're 
trying to estimate the Real Estate 
price. Like in the Deloitte competition 
named Western Australia Rental 
Prices, or in the Sberbank Russian 
Housing Market competition.  
Generally, you can calculate distances to important points on the map.  

Keep this wonderful map. If you have additional data with 
infrastructural buildings, you can add as a feature distance to the 
nearest shop to the second by distance hospital, to the best school in 
the neighborhood and so on.  

If you do not have such data, you can extract interesting points on the 
map from your trained test data. For example, you can do a new map 
to squares, with a grid, and within each square, find the most 
expensive flat, and for every other object in this square, add the 
distance to that flat. Or you can organize your data points into 
clusters, and then use centers of clusters as such important points.  

Or again, another way. You can find some special areas, like the area 
with very old buildings and add distance to this one.  
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Another major approach to use coordinates is to calculate aggregated 
statistics for objects surrounding area. This can include number of lets 
around this particular point, which can then be interpreted as areas or 
polarity. Or we can add mean realty price, which will indicate how 
expensive area around selected point is.  

Both distances and aggregate statistics are often useful in tasks with 
coordinates.  

One more trick you need to know about coordinates, that if you train 
decision trees from them, you can add slightly rotated coordinates is 
new features. And this will help a model make more precise selections 
on the map.  

It can be hard to know what exact rotation we should make, so we 
may want to add all rotations to 45 or 22.5 degrees.  

Let's look at the next example of a relative price prediction.  

Here the street is dividing an area in two parts. The high priced district 
above the street, and the low priced district below it. If the street is 
slightly rotated, trees will try to make a lot of space here. But if we will 
add new coordinates in which these two districts can be divided by a 
single split, this will hugely facilitate the rebuilding process.  

Great, we just summarize the most frequent methods used for future 
generation from date-time and coordinates. For date-time, these are 
applying periodicity, calculates in time passed since particular event, 
and engine differences between two date-time features.  

For coordinates, we should recall extracting interesting samples 
from trained test data, using places from additional data, calculating 
distances to centers of clusters, and adding aggregated statistics for 
surrounding area.  

Knowing how to effectively handle date-time and coordinates, as well 
as numeric and categorical features, will provide you reliable way to 
improve your score. And to help you devise that specific part of 
solution which is often required to beat very top scores. 
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Handling Missing Values 
Often we have to deal with missing values in our data. They could look 
like not numbers, empty strings, or outliers like -999. Sometimes they 
can contain useful information by themselves, like what was the 
reason of missing value occurring here? How to use them effectively? 
How to engineer new features from them? 

So what kind of information missing values might contain? How can 
they look like? Let's take a look at missing values in the Springfield 
competition.  

This is matrix of samples and 
f ea tu res . Peop l e manua l l y 
reviewed each feature, and found 
missing values for each column. 
This values could be not a 
number, empty string, -1, 99, and 
so on. For example, how can we 
found out that -1 can be the missing value? We could draw a 
histogram and see this variable has uniform distribution between 0 and 
1. And that it has small peak of -1 values. So if there are no not 
numbers there, we can assume that they were replaced by -1. Or the 
feature distribution plot can look like the second figure.  

Note that x-axis has log 
scale. In this case, not a 
numbers probably were filled 
by features mean value. You 
can easily generalize this 
logic to apply to other cases.  

Okay on this example we just learned this, missing values can be 
hidden from us. And by hidden I mean replaced by some other value 
beside NaN.  

Great, let's talk about missing value imputation. The most often 
examples are first, replacing NaN with some value outside feature 
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value range. Second, replacing NaN with mean or median. And third, 
trying to reconstruct value somehow.  

First method is useful in a way that it gives three possibility to take 
missing value into separate category. The downside of this is that 
performance of linear models and NNs can suffer.  

Second method usually beneficial for simple linear models and neural 
networks. But again for trees it can be harder to select object which 
had missing values in the first place.  

Let's keep the feature value reconstruction for now, and turn to feature 
generation for a moment.  

The concern we just have discussed can be 
addressed by adding new feature isnull 
indicating which rows have missing values for 
this feature.  

This can solve problems with trees and neural 
networks while imputing mean or median. But 
the downside of this is that we will double 
number of columns in the data set.  

Now back to missing values imputation methods. The third one, 
and the last one we will discuss here, is to reconstruct each value if 
possible. One example of such 
possibility is having missing values in 
time series. For example, we could 
have everyday temperature for a 
month but several values in the 
middle of months are missing. Well of 
course, we can approximate them 
using nearby observations. But 
obviously, this kind of opportunity is 
rarely the case. In most typical 
scenario rows of our data set are 
independent. And we usually will not 
find any proper logic to reconstruct 
them.  
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Great, to this moment we already learned that we can construct new 
feature, isnull indicating which rows contains NaN.  

What are other important moments about feature generation we 
should know?  

Well there's one general concern about generating new features from 
one with missing values. That is, if we do this, we should be very 
careful with replacing missing values before our feature generation. To 
illustrate this, let's imagine we have a year long data set with two 
features. Daytime feature and temperature which had missing 
values. We can see all of this on the figure.  

Now we fill missing values with some value, 
for example with median. If you have data 
over the whole year median probably will 
be near zero so it should look like 
that. Now we want to add feature like 
difference between temperature today 
and yesterday, let's do this.  

As we can see, near the missing values this difference usually will be 
abnormally huge. And this can be misleading our model. But hey, we 
already know that we can approximate missing values in time 
series by interpolation nearby points, great. But unfortunately, we 
usually don't have enough time to be so careful here. And more 
importantly, these problems can occur in cases when we can't come up 
with such specific solution.  

Let's review another method of missing value 
imputation. Which will be substantially discussed later 
in advanced feature engineering topic.  

Here we have a data set with independent rows. And 
we want to encode the categorical feature with the 
numeric feature. To achieve that we calculate mean 
value of numeric feature for every category, and 
replace categories with these mean values.  
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What happens if we fill NaN in the 
numeric feature, with some value 
outside of feature range like -999.  

As we can see, all values we will 
be doing them closer to -999. And 
the more the row's corresponding 
to particular category will have 
missing values, the closer mean 
value will be to -999. The same is 
true if we fill missing values with mean or median of the feature. This 
kind of missing value imputation definitely can screw up the feature we 
are constructing. The way to handle this particular case is to simply 
ignore missing values while calculating means for each category.  

Again let me repeat the idea of these two examples.  

You should be very careful with early NaN imputation if you want to 
generate new features. There's one more interesting thing about 
missing values.  

XGBoost can handle NaNs and sometimes using this approach can 
change score drastically.  

Besides common approaches we have discussed, sometimes we can 
treat outliers as missing values. For example, if we have some easy 
classification task with songs which are thought to be composed even 
before ancient Rome, or maybe the year 2025. We can try to treat 
these outliers as missing values.  

If you have categorical features, sometimes it can be beneficial to 
change the missing values or categories which is present in the test 
data but is not present in the train data. The intention for doing so 
appeals to the fact that the model which didn't have that category in 
the train data will eventually treat it randomly. Here a supervised 
encoding of categorical features can be of help. As we already 
discussed, we can change categories to its frequencies and thus treat 
categories the same as before based on their frequency.  
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Let's walk through the example on 
the slide. There you see from the 
categorical feature, they not 
appear in the train. Let's generate 
new feature indicating number of 
where the occurrence is in the 
data.  

We w i l l n ame t h i s f ea tu r e 
categorical_encoded. Value A has 
six occurrences in both train and 
test, and that's value of new 
feature related to A will be equal to 6. The same works for values B, D, 
or C. But now new features various related to D and C are equal to 
each other. And if there is some 
dependence in between target 
and number of occurrences 
for each category, our model will 
be able to successfully visualize 
that.  

To conclude this video, let’s overview main points we have discussed.  

The choice of method to fill NaN depends on the situation. Sometimes, 
you can reconstruct missing values. But usually, it is easier to replace 
them with value outside of feature range, like -999 or to replace them 
with mean or median.  

Also missing values already can be replaced with something by 
organizers. 

In this case if you want know exact rows which have missing values 
you can investigate this by plotting histograms. More, the model can 
improve its results using binary feature isnull which indicates what 
roles have missing values.  

In general, avoid replacing missing values before feature generation, 
because it can decrease usefulness of the features. And in the end, 
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Xgboost can handle NaN directly, which sometimes can change the 
score for the better.  

Using knowledge you have derived from our discussion, now you 
should be able to identify missing values. Describe main methods to 
handle them, and apply this knowledge to gain an edge in your next 
computation. Try these methods in different scenarios and for sure, 
you will succeed 

Overview of methods 

	 •	 Scikit-Learn (or sklearn) library 

	 •	 Overview of k-NN (sklearn's documentation) 

	 •	 Overview of Linear Models (sklearn's documentation) 

	 •	 Overview of Decision Trees (sklearn's documentation) 

	 •	 Overview of algorithms and parameters in H2O documentation 

Additional Tools 

	 •	 Vowpal Wabbit repository 

	 •	 XGBoost repository 
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http://scikit-learn.org/
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/linear_model.html
http://scikit-learn.org/stable/modules/tree.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html
https://github.com/JohnLangford/vowpal_wabbit
https://github.com/dmlc/xgboost


	 •	 LightGBM repository 

	 •	 Interactive demo of simple feed-forward Neural Net 

	 •	 Frameworks for Neural  Nets: Keras, PyTorch, TensorFlow, 
MXNet, Lasagne 

	 •	 Example from sklearn with different decision surfaces 

	 •	 Arbitrary order factorization machines 

Feature Extraction from Text and Images 
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https://github.com/Microsoft/LightGBM
http://playground.tensorflow.org/
https://keras.io/
https://keras.io,/
http://pytorch.org/
http://pytorch.org,/
https://www.tensorflow.org/
https://www.tensorflow.org,/
http://mxnet.io/
http://lasagne.readthedocs.io/
http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://github.com/geffy/tffm

