
Week 1
Feature preprocessing
Each type of feature has its own ways to be preprocessed in order to
improve quality of the model. In other words, choice of preprocessing
matter, it depends on the model we're going to use. For example, let's
suppose that target has nonlinear dependency on the pclass feature.
Pclass linear of 1 usually leads to
target of 1, 2 leads to 0, and 3
leads to 1 again. Clearly, because
this is not a linear dependency ,
linear model cannot get a good
result here. So in order to improve
a linear model's quality, we would
want to preprocess pclass feature in
some way. For example, with the
so-called one-hot-encoding. The
linear model will fit much better
now than in the previous case.
However, random forest does not require this feature to be
transformed at all. Random forest can easily put each pclass in
separately and predict fine probabilities. So, that was an example of
preprocessing. The second reason why we should be aware of different
feature types is to ease generation of new features. Feature types
differ in this and comprehends in common feature generation
methods. While gaining an ability to improve your model through
them. Also understanding of basics of feature generation will aid you
greatly in upcoming advanced feature topics from our course.

As in the first point, understanding of a model here can help us to
create useful features. Let me show you an example. Say, we have to
predict the number of apples a shop will sell each day next week and
we already have a couple of months sales history as training data.

Let's consider that we have an obvious linear trend through out the
data and we want to inform the model about it. To provide you a visual
example, we prepare the second table with last days from train and
first days from test.

� of �1 24

One way to help model to
utilize linear trend is to add
feature indicating the week
number passed. With this
feature, linear model can
successfully find an existing
linear and dependency.

On the other hand, a gradient boosted decision tree will use this
feature to calculate something like mean target value for each
week. Here, I calculated mean values manually and placed them in the
data frame. We're going to predict number of apples for the sixth
week.

Note that we indeed have linear trend here. So let's plot how a
gradient within the decision tree will split the week feature.

As we do not train Gradient Boosting decision tree on the sixth week, it
will not put splits between the fifth and the sixth weeks, then, when
we will predict the numbers for the 6th week, the model will end up
using the value from the 5th week. As
we can see unfortunately, no users
shall land their linear trend here. And
vise versa, we can come up with an
example of generated feature that will
be beneficial for gradient boosting
decisions tree and useless for linear
model. So this example shows us, that our approach to
feature generation should rely on understanding of employed
model. To summarize this video, first, feature preprocessing is
necessary instrument you have to use to adapt data to your model.
Second, feature generation is a very powerful technique which can aid
you significantly. And at last, both feature preprocessing and feature
generation depend on the model you are going to use. So these three
topics, in connection to feature types, will be general theme of the
next videos. We will thoroughly examine most frequent methods which
you can be able to incorporate in your solutions.

� of �2 24

Numeric Preprocessing
Here, we will cover basic approach as to feature preprocessing and
feature generation for numeric features. We will understand how
model choice impacts feature preprocessing. We will identify the
preprocessing methods that are used most often, and we will discuss
feature generation and go through several examples. Let's start with
preprocessing.

First thing you need to know about handling numeric features is that
there are models which do and don’t depend on feature scale. For now,
we will broadly divide all models into tree-based models and non-tree-
based models. For example, decision trees classifier tries to find the
most useful split for each feature, and it won't change its behavior and
its predictions if we multiply the features by a constant and to retrain
the model.

On the other side, there are models which depend on these kind of
transformations. The model based on nearest neighbors, linear
models, and neural network. Let's consider the following example. We
have a binary classification task with two features. The object in the
picture belong to di f ferent
classes. The red circle to class
zero, and the blue cross to class
one, and finally, the class of the
green object is unknown. Here,
we wil l use a one nearest
neighbor’s model to predict the
class of the green object. We will
measure distance using square
distance.

Now, if we calculate distances to
the red circle and to the blue
cross, we will see that our model
will predict class one for the green
object because the blue cross of class one is much closer than the red
circle. But if we multiply the first feature by 10, the red circle will
became the closest object, and we will get an opposite prediction. Let's
now consider two extreme cases.

� of �3 24

What will happen if we multiply the first feature by zero and by one
million? If the feature is multiplied by zero, then every object will have
feature relay of zero, which results in KNN ignoring that feature. On
the opposite, if the feature is multiplied by one million, slightest
differences in that features values will impact prediction, and this will
result in KNN favoring that feature over all others.

Great, but what about other models? Linear models are also
experience difficulties with differently scaled features. First, we want
regularization to be applied to linear models coefficients for features in
equal amount. But in fact, regularization impact turns out to be
proportional to feature scale. And second, gradient descent methods
can go crazy without a proper scaling. Due to the same reasons,
neural networks are similar to linear models in the requirements for
feature preprocessing.

It is important to understand that different features scalings result in
different models quality. In this sense, it is just another hyper
parameter you need to optimize. The easiest way to do this is to
rescale all features to the same scale. For example, to make the
minimum of a feature equal to 0 and the maximum equal to 1, you can
achieve this in two steps. First, we subtract the minimum value. And
then, we divide the difference by the range. It can be done with
MinMaxScaler from sklearn. Let's illustrate this with an example. We
apply the so-called MinMaxScaler to two features from the detaining
dataset, Age and SibSp. Looking
at histograms, we see that the
features have different scale,
age is between 0 and 80, while
SibSp is between 0 and 8. Let's
apply MinMaxScaling and see
what it will do. Indeed, we see
that after this transformation,
both age and SibSp features
were successfully converted to
the same range of (0,1).

Note that distributions of values
which we observe from the histograms didn't change. To give you

� of �4 24

another example, we can apply a scalar named StandardScaler in
sklearn, which basically first subtracts mean value from the feature,
and then divides the result by feature
standard deviation. In this way, we'll get
standardized distribution, with a mean of 0
and standard deviation of 1. After either of
MinMaxSca l ing or StandardSca l ing
transformations, features impacts on non-
tree-based models will be roughly similar.

Even more, if you want to use KNN, we can go one step further and
recall that the bigger the feature is, the more important it will be for
KNN. So, we can optimize scaling parameter to boost features which
seems to be more important for us and see if this helps.

When we work with linear models, there is another important moment
that influences model’s results. I'm talking about outliers. For example,
in this plot, we have one feature, X, and a target variable, Y. If you fit
a simple linear model, its predictions can look just like the red line. But
if you do have one outlier with X feature equal to some huge value,
predictions of the linear model will look more like the purple line. The
same holds, not only for features values, but also for target values. For
example, let's imagine we have a model trained on the data with
target values between 0 and 1. Let's think what happens if we add a
new sample in the training data with a target value of 1,000. When we
retrain the model, the model will predict abnormally high values.
Obviously, we have to fix this somehow. To protect linear models from
outliers, we can clip
f e a t u r e s v a l u e s
between two chosen
values of lower bound
and upper bound. We
can choose them as
some percentiles of
t h a t f e a t u r e . F o r
example, first and 99s
p e r c e n t i l e s . T h i s
procedure of clipping is
well-known in financial
data and it is called winsorization.

� of �5 24

Let's take a look at this histogram for an example. We see that the
major i ty o f feature
values are between zero
and 400. But there is a
number of outliers with
values around -1,000.
They can make life a lot
harder for our nice and
simple linear model.
Let's clip this feature's
value range, and to do
s o , f i r s t , w e w i l l
calculate lower bound
and upper bound values
as features values at
first and 99th percentiles. After we clip the features values, we can see
that features distribution looks fine, and we hope now this feature will
be more useful for our model.

Another effective preprocessing for numeric features is the rank
transformation. Basically, it sets spaces between proper assorted
values to be equal. This transformation, for example, can be a better
option than MinMaxScaler if we have outliers, because rank
transformation will move the outliers closer to other objects. Let's
understand rank using this example. If we apply a rank to the sorted
of array, it will just change values to their
indices. Now, if we apply a rank to the
not-sorted array, it wil l sort this
array, define mapping between values
and indices in this sorted of array, and
apply this mapping to the initial array. Linear models, KNN, and neural
networks can benefit from this kind of transformation if we have no
time to handle outliers manually. Rank can be imported as a random
data function from scipy. One more important note about the rank
transformation is that to apply it to the test data, you need to store
the created mapping from features values to their rank values. Or
alternatively, you can concatenate, train, and test data before applying
the rank transformation.

� of �6 24

There is one more example of numeric features preprocessing which
often helps non-tree-based models and especially neural networks.
You can apply log transformation through your
data, or there's another possibility. You can
extract a square root of the data. Both these
transformations can be useful because they
drive too big values closer to the features'
average value. Along with this, the values
n e a r 0 a r e b e c o m i n g a b i t m o r e
distinguishable. Despite the simplicity, one of
these transformations can improve your neural network's results
significantly.

Another important moment which holds true for all preprocessing is
that sometimes it is beneficial to train a model on concatenated data
frames produced by different preprocessing, or to mix models trained
on differently-preprocessed data. Again, linear models, KNN, and
neural networks can benefit hugely from this.

To this end, we have discussed numeric feature preprocessing, how
model choice impacts feature preprocessing, and what are the most
commonly used preprocessing methods.

Let's now move on to feature generation. Feature generation is a
process of creating new features using knowledge about the features
and the task. It helps us by making model training more simple and
effective. Sometimes, we can engineer these features using prior
knowledge and logic. Sometimes we have to dig into the data, create
and check hypothesis, and use this derived knowledge and our
intuition to derive new features. Here, we will discuss feature
generation with prior knowledge, but as it turns out, an ability to dig
into the data and derive insights is what makes a good competitor a
great one. We will thoroughly analyze and illustrate this skill in the
next lessons on exploratory data analysis. For now, let's discuss
examples of feature generation for numeric features. First, let's start
with a simple one.

If you have columns: Real Estate price and Real Estate squared area in
the dataset, we can quickly add one more feature, price per meter
square. Easy, and this seems quite reasonable. Or, let me give you

� of �7 24

another quick example from the Forest Cover Type Prediction
dataset. If we have a horizontal distance
to a water source and the vertical
difference in heights within the point
and the water source, we as well may
add combined feature indicating the
direct distance to the water from this
point. Among other things, it is useful
to know that adding, multiplications,
d i v i s i o n s , a n d o t h e r f e a t u r e s
interactions can be of help not only for
linear models. For example, although
gradient boosting decision tree is a very
powerful model, it still experiences difficulties with approximation of
multiplications and divisions. And adding size features explicitly
can lead to a more robust model with less amount of trees. The third
example of feature generation for numeric features is also very
interesting. Sometimes, if we have
prices of products as a feature, we can
add new feature indicating fractional
part of these prices. For example, if
some product costs 2.49, the fractional
part of its price is 0.49. This feature
can help the model ut i l ize the
differences in people's perception of
these prices.
Also, we can find similar patterns in
tasks which require distinguishing between a human and a robot. For
example, if we will have some kind of financial data like auctions, we
could observe that people tend to set round numbers as prices, and
there are something like 0.935, blah, blah, blah, very long number
here. Or, if we are trying to find spambots on social networks, we can
be sure that no human ever write messages with an exact interval of
one second.
Great, these three examples should have provided you an idea
that creativity and data understanding are the keys to productive
feature generation. Let's summarize this up. In this video, we have
discussed numeric features.
First, the impact of feature preprocessing is different for different
models. Tree-based models don't depend on scaling, while non-tree-

� of �8 24

based models usually depend on them. Second, we can treat scaling
as an important hyper parameter in cases when the choice of scaling
impacts predictions quality. And at last, we should remember that
feature generation is powered by an understanding of the data.

Ordinal And Categorical

In particular, what kind of pre-processing will be used for each model
type of them? What is the difference between categorical and and
ordinal features and how we can generate new features from them?
First, let's look at several rows from the Titanic dataset and find
categorical features here. Their names are: Sex, Cabin and Embarked.
These are usual categorical features but there is one more special, the
Pclass feature. Pclass stands for ticket class, and has three unique
values: 1, 2, and 3. It is ordinal, in other words, ordered categorical
feature. This basically means that it is ordered in some meaningful
way. For example, if the first class was more expensive than the
second, or the more the first should be more expensive than the third.

� of �9 24

We should make an important note here about differences between
ordinal and numeric features. If Pclass would have been a numeric
feature, we could say that the difference between first, and the second
class is equal to the difference between second and the third class, but
because Pclass is ordinal, we don't know which difference is bigger. As
with numeric features, we can't sort and integrate(?) an ordinal
feature the other way, and expect to get similar performance. Another
example for ordinal feature is a driver's license type. It's either A, B,
C, or D. Or another example, level of education, kindergarten, school,
undergraduate, bachelor, master, and doctoral. These categories are
sorted in increasingly complex order, which can prove to be useful. The
simplest way to encode a categorical feature is to map it's unique
values to different numbers. Usually, people referred to this procedure
as label encoding. This method works fine with trees because tree-
methods can split feature, and extract most of the useful values in
categories on its own. Non-tree-
b a s e d - m o d e l s , o n t h e o t h e r
side, usually can't use this feature
effectively. And if you want to train
linear model kNN on neural network,
you need to treat a categorical
feature differently. To illustrate this,
let’s remember example we had in
the beginning of this topic. What if
Pclass of 1 usually leads to the target
of 1, Pclass of 2 leads to 0, and Pclass
of 3 leads to 1. This dependence is not linear, and linear model will be
confused. And indeed, here, we can put linear models predictions, and
see they all are around 0.5. This looks kind of sad but trees on the
other side, will just make two splits selecting each unique value and
reaching it independently. Thus, decision trees could achieve much
better score here using these feature. Let's take another categorical
feature and again, apply label encoding. Let this be the feature
Embarked. Although, we didn't have to encode the previous feature
Pclass before using it in the model. Here, we definitely need to do this
with embarked. It can be achieved in several ways. First, we can apply
encoding in the alphabetical or sorted order. Unique way to solve of
this feature namely S, C, Q, can be encoded as 2, 1, 3. This is called
label encoder from sklearn works by default. The second way is also
label encoding but slightly different. Here, we encode a categorical

� of �10 24

f e a t u r e b y o r d e r o f
appearance. For example, s
will change to 1 because it
was met first in the data.
Second then c, and we will
change c to 2. And the last is
q, which will be changed to 3.
This can make sense if all
w e r e s o r t e d i n s o m e
meaningful way. This is the
d e f a u l t b e h a v i o r o f
pandas.factorize function.

The third method that I will
te l l you about is ca l led
frequency encoding. We can
encode th is feature v ia
mapping values to their
frequencies. If 30 percent for
us embarked is equal to c and 50 to s and the rest 20 is equal to q. We
can change this values accordingly: c to 0.3, s to 0. 5, and q to 0.2.
This will preserve some information about values distribution, and can
help both linear and tree models. The former methods, can find this
feature useful if value frequency is correlated with target value. While
the latter models can help with less number of splits because of the
same reason.
There is another important moment about frequency encoding. If you
have multiple categories with the same frequency, they won't be
distinguishable in this new feature. We might apply rank operation
here in order to deal with such ties. It is possible to do like this. There
are other ways to do label encoding, and I definitely encourage you to
be creative in constructing them.

We just discussed label encoding, frequency encoding, and why this
works fine for tree-based-methods. But we also have seen that linear
models can struggle with label encoded feature. The way to identify
categorical features to non-tree-based-models is also quite
straightforward. We need to make new code for each unique value in
the future, and put one in the appropriate place. Everything else will
be zeroes. This method is called, one-hot encoding. Let's see how it

� of �11 24

works on this quick example. So here, for each unique value of Pclass
feature, we just created a new column. As I said, this works well for
linear methods, kNN, or neural networks. Furthermore, one -hot
encoded feature is already scaled because minimum this feature is 0,
and maximum is 1.
Note that if you have a few
important numeric features,
and hundreds o f b ina ry
features are used by one-hot
encoding, it could become
difficult for tree-methods to
use first ones efficiently. More
precisely, tree-methods will
s l o w d o w n , n o t a l wa y s
improving their results. Also,
it’s easy to imply that if
categorical feature has too many unique values, we will add too many
new columns with a few non-zero values. To store these new array
efficiently, we must know about sparse matrices. In a nutshell, instead
of allocating space in RAM for every element of an array, we can store
only non-zero elements and thus, save a lot of memory. Going with
sparse matrices makes sense if number of non-zero values is far less
than half of all the values. Sparse matrices are often useful when they
work with categorical features or text data. Most of the popular
l ibrar ies can work wi th these sparse matr ices d i rect ly
namely, XGBoost, LightGBM, sklearn, and others.

After figuring out how to pre-processed categorical features for tree
based and non-tree based models, we can take a quick look at feature
generation.
One of the most useful examples of feature generation is feature
interaction between several categorical features. This is usually useful
for non tree based models namely, linear model, kNN. For example,
let’s hypothesize that target depends on both Pclass feature, and sex
feature. If this is true, linear model could adjust its predictions for
every possible combination of these two features, and get a better
result. How can we make this happen? Let's add this interaction by
simply concatenating strings from both columns and one-hot encoding
it. Now linear model can find optimal coefficient for every interaction
and improve. Simple and effective.

� of �12 24

More on features interactions
will come in the following
weeks especially, in advanced
features topic.

Now, let’s summarize this
features.
First, ordinal is a special case
of categorical feature but with
v a l u e s s o r t e d i n s o m e
meaningful order.
S e c o n d , l a b e l e n c o d i n g
basically replaces unique values
of categorical features with numbers.

Third, frequency encoding, maps unique values to their frequencies.
Fourth, label encoding and frequency encoding are often used for tree-
based methods.

Fifth, One-hot encoding is often used for non-tree-based-methods.
And finally, applying One-hot encoding to combinations of categorial
features allows non-tree-based-models to take into consideration
interactions between features, and improve.

We just sorted out it feature pre-process for categorical features, and
took a quick look on feature generation. Now, you will be able to apply
these concepts in your next competition and get better results.

� of �13 24

DateTime and Coordinate

We will discuss basic feature generation approaches for datetime and
coordinate features. They both differ significantly from numeric and
categorical features. Because we can interpret the meaning of
datetime and coordinates, we can came up with specific ideas about
future generation which we'll discuss here. Let's start with date-time.

Date-time is quite a interesting feature because it isn't on the linear
nature, it also has several different parts like year, day or week. Most
new features generated from date-
time can be divided into two
categories. The first one, time
moments in a period, and the
second one, time passed since
particular event. First one is very
simple. We can add features like
second, minute, hour, day in a
week, in a month, on the year and
so on and so forth.

This is useful to capture repetitive
patterns in the data. If we know
about some non-common periods which influence the data, we can add
them as well. For example, if we are to predict efficiency of
medication, but patients receive pills one time every three days, we
can consider this as a special time period.

Now, Time since particular event.

This event can be either row-independent or row-dependent. In the
first case, we just calculate time passed from one general moment
for all data. For example, from here to thousand. Here, all samples will
become comparable between each other on one time scale.

As the second variant of time_since_particular_event, that date will
depend on the sample we are calculating this for. For example, if we
are to predict sales in a shop, like in the ROSSMANN's store sales
competition. We can add the number of days passed since the last
holiday, weekend or since the last sales campaign, or maybe the

� of �14 24

number of days left to these
events. So, after adding these
features, our data_frame can
look like this.

Date is obviously a date, and
sales are the target of this
task, while other columns are
generated features. Week day
feature indicates which day in
the week is this, daynumber
_since_year_2014 indicates
how many days have passed
since January 1st, 2014.
is_holiday is a binary feature
indicating whether this day is a
holiday and days_till_holidays
indicate how many days are left
b e f o r e t h e c l o s e s t h o l i d ay.
Sometimes we have several date-
time columns in our data. The most
straightforward idea here is to subtract one feature from another. Or
perhaps subtract the generated features, like the one, we just have
discussed.

Time moment inside the period or time passed in row dependent
events. One simple example of such generation can be found in churn
prediction task. Basically churn prediction is about estimating the
likelihood that customers will churn.

We may receive a valuable feature here by subtracting user
registration date from the date of some action of his, like purchasing a
product, or calling to the
customer service. We can
see how this works on this
data_frame. For every user,
we know last_purchase_date
and last_call_date. Here we
add the difference between
them as new feature named

� of �15 24

date_diff. For clarity, let's
take a look at this figure. For
every user, we have his
last_purchase_date and his
last_call_date. Thus, we can
add date_diff feature which
indicates number of days
between these events. Note
that after generation features
from date-time, you usually will get either numeric features like time
passed since the year 2000, or categorical features like day of week.
And these features now need to be treated accordingly with necessary
pre-processing we have discussed earlier.

Now having discussed feature
generation for date-time, let's move
on to f ea tu re gene ra t i on f o r
coordinates. Let's imagine that we're
trying to estimate the Real Estate
price. Like in the Deloitte competition
named Western Australia Rental
Prices, or in the Sberbank Russian
Housing Market competition.
Generally, you can calculate distances to important points on the map.

Keep this wonderful map. If you have additional data with
infrastructural buildings, you can add as a feature distance to the
nearest shop to the second by distance hospital, to the best school in
the neighborhood and so on.

If you do not have such data, you can extract interesting points on the
map from your trained test data. For example, you can do a new map
to squares, with a grid, and within each square, find the most
expensive flat, and for every other object in this square, add the
distance to that flat. Or you can organize your data points into
clusters, and then use centers of clusters as such important points.

Or again, another way. You can find some special areas, like the area
with very old buildings and add distance to this one.

� of �16 24

Another major approach to use coordinates is to calculate aggregated
statistics for objects surrounding area. This can include number of lets
around this particular point, which can then be interpreted as areas or
polarity. Or we can add mean realty price, which will indicate how
expensive area around selected point is.

Both distances and aggregate statistics are often useful in tasks with
coordinates.

One more trick you need to know about coordinates, that if you train
decision trees from them, you can add slightly rotated coordinates is
new features. And this will help a model make more precise selections
on the map.

It can be hard to know what exact rotation we should make, so we
may want to add all rotations to 45 or 22.5 degrees.

Let's look at the next example of a relative price prediction.

Here the street is dividing an area in two parts. The high priced district
above the street, and the low priced district below it. If the street is
slightly rotated, trees will try to make a lot of space here. But if we will
add new coordinates in which these two districts can be divided by a
single split, this will hugely facilitate the rebuilding process.

Great, we just summarize the most frequent methods used for future
generation from date-time and coordinates. For date-time, these are
applying periodicity, calculates in time passed since particular event,
and engine differences between two date-time features.

For coordinates, we should recall extracting interesting samples
from trained test data, using places from additional data, calculating
distances to centers of clusters, and adding aggregated statistics for
surrounding area.

Knowing how to effectively handle date-time and coordinates, as well
as numeric and categorical features, will provide you reliable way to
improve your score. And to help you devise that specific part of
solution which is often required to beat very top scores.

� of �17 24

Handling Missing Values
Often we have to deal with missing values in our data. They could look
like not numbers, empty strings, or outliers like -999. Sometimes they
can contain useful information by themselves, like what was the
reason of missing value occurring here? How to use them effectively?
How to engineer new features from them?

So what kind of information missing values might contain? How can
they look like? Let's take a look at missing values in the Springfield
competition.

This is matrix of samples and
f ea tu res . Peop l e manua l l y
reviewed each feature, and found
missing values for each column.
This values could be not a
number, empty string, -1, 99, and
so on. For example, how can we
found out that -1 can be the missing value? We could draw a
histogram and see this variable has uniform distribution between 0 and
1. And that it has small peak of -1 values. So if there are no not
numbers there, we can assume that they were replaced by -1. Or the
feature distribution plot can look like the second figure.

Note that x-axis has log
scale. In this case, not a
numbers probably were filled
by features mean value. You
can easily generalize this
logic to apply to other cases.

Okay on this example we just learned this, missing values can be
hidden from us. And by hidden I mean replaced by some other value
beside NaN.

Great, let's talk about missing value imputation. The most often
examples are first, replacing NaN with some value outside feature

� of �18 24

value range. Second, replacing NaN with mean or median. And third,
trying to reconstruct value somehow.

First method is useful in a way that it gives three possibility to take
missing value into separate category. The downside of this is that
performance of linear models and NNs can suffer.

Second method usually beneficial for simple linear models and neural
networks. But again for trees it can be harder to select object which
had missing values in the first place.

Let's keep the feature value reconstruction for now, and turn to feature
generation for a moment.

The concern we just have discussed can be
addressed by adding new feature isnull
indicating which rows have missing values for
this feature.

This can solve problems with trees and neural
networks while imputing mean or median. But
the downside of this is that we will double
number of columns in the data set.

Now back to missing values imputation methods. The third one,
and the last one we will discuss here, is to reconstruct each value if
possible. One example of such
possibility is having missing values in
time series. For example, we could
have everyday temperature for a
month but several values in the
middle of months are missing. Well of
course, we can approximate them
using nearby observations. But
obviously, this kind of opportunity is
rarely the case. In most typical
scenario rows of our data set are
independent. And we usually will not
find any proper logic to reconstruct
them.

� of �19 24

Great, to this moment we already learned that we can construct new
feature, isnull indicating which rows contains NaN.

What are other important moments about feature generation we
should know?

Well there's one general concern about generating new features from
one with missing values. That is, if we do this, we should be very
careful with replacing missing values before our feature generation. To
illustrate this, let's imagine we have a year long data set with two
features. Daytime feature and temperature which had missing
values. We can see all of this on the figure.

Now we fill missing values with some value,
for example with median. If you have data
over the whole year median probably will
be near zero so it should look like
that. Now we want to add feature like
difference between temperature today
and yesterday, let's do this.

As we can see, near the missing values this difference usually will be
abnormally huge. And this can be misleading our model. But hey, we
already know that we can approximate missing values in time
series by interpolation nearby points, great. But unfortunately, we
usually don't have enough time to be so careful here. And more
importantly, these problems can occur in cases when we can't come up
with such specific solution.

Let's review another method of missing value
imputation. Which will be substantially discussed later
in advanced feature engineering topic.

Here we have a data set with independent rows. And
we want to encode the categorical feature with the
numeric feature. To achieve that we calculate mean
value of numeric feature for every category, and
replace categories with these mean values.

� of �20 24

What happens if we fill NaN in the
numeric feature, with some value
outside of feature range like -999.

As we can see, all values we will
be doing them closer to -999. And
the more the row's corresponding
to particular category will have
missing values, the closer mean
value will be to -999. The same is
true if we fill missing values with mean or median of the feature. This
kind of missing value imputation definitely can screw up the feature we
are constructing. The way to handle this particular case is to simply
ignore missing values while calculating means for each category.

Again let me repeat the idea of these two examples.

You should be very careful with early NaN imputation if you want to
generate new features. There's one more interesting thing about
missing values.

XGBoost can handle NaNs and sometimes using this approach can
change score drastically.

Besides common approaches we have discussed, sometimes we can
treat outliers as missing values. For example, if we have some easy
classification task with songs which are thought to be composed even
before ancient Rome, or maybe the year 2025. We can try to treat
these outliers as missing values.

If you have categorical features, sometimes it can be beneficial to
change the missing values or categories which is present in the test
data but is not present in the train data. The intention for doing so
appeals to the fact that the model which didn't have that category in
the train data will eventually treat it randomly. Here a supervised
encoding of categorical features can be of help. As we already
discussed, we can change categories to its frequencies and thus treat
categories the same as before based on their frequency.

� of �21 24

Let's walk through the example on
the slide. There you see from the
categorical feature, they not
appear in the train. Let's generate
new feature indicating number of
where the occurrence is in the
data.

We w i l l n ame t h i s f ea tu r e
categorical_encoded. Value A has
six occurrences in both train and
test, and that's value of new
feature related to A will be equal to 6. The same works for values B, D,
or C. But now new features various related to D and C are equal to
each other. And if there is some
dependence in between target
and number of occurrences
for each category, our model will
be able to successfully visualize
that.

To conclude this video, let’s overview main points we have discussed.

The choice of method to fill NaN depends on the situation. Sometimes,
you can reconstruct missing values. But usually, it is easier to replace
them with value outside of feature range, like -999 or to replace them
with mean or median.

Also missing values already can be replaced with something by
organizers.

In this case if you want know exact rows which have missing values
you can investigate this by plotting histograms. More, the model can
improve its results using binary feature isnull which indicates what
roles have missing values.

In general, avoid replacing missing values before feature generation,
because it can decrease usefulness of the features. And in the end,

� of �22 24

Xgboost can handle NaN directly, which sometimes can change the
score for the better.

Using knowledge you have derived from our discussion, now you
should be able to identify missing values. Describe main methods to
handle them, and apply this knowledge to gain an edge in your next
computation. Try these methods in different scenarios and for sure,
you will succeed

Overview of methods

	 •	 Scikit-Learn (or sklearn) library

	 •	 Overview of k-NN (sklearn's documentation)

	 •	 Overview of Linear Models (sklearn's documentation)

	 •	 Overview of Decision Trees (sklearn's documentation)

	 •	 Overview of algorithms and parameters in H2O documentation

Additional Tools

	 •	 Vowpal Wabbit repository

	 •	 XGBoost repository

� of �23 24

http://scikit-learn.org/
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/linear_model.html
http://scikit-learn.org/stable/modules/tree.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html
https://github.com/JohnLangford/vowpal_wabbit
https://github.com/dmlc/xgboost

	 •	 LightGBM repository

	 •	 Interactive demo of simple feed-forward Neural Net

	 •	 Frameworks for Neural Nets: Keras, PyTorch, TensorFlow,
MXNet, Lasagne

	 •	 Example from sklearn with different decision surfaces

	 •	 Arbitrary order factorization machines

Feature Extraction from Text and Images

� of �24 24

https://github.com/Microsoft/LightGBM
http://playground.tensorflow.org/
https://keras.io/
https://keras.io,/
http://pytorch.org/
http://pytorch.org,/
https://www.tensorflow.org/
https://www.tensorflow.org,/
http://mxnet.io/
http://lasagne.readthedocs.io/
http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://github.com/geffy/tffm

