
WEEK 2 - Part 2 
Validation Strategies 
• Hold out (Just one validation set.) 
• K-Fold 
• Leave One Out = K-fold when k=n. 

HoldOut: sklearn.model_selection.ShuffleSplit 
K-Fold :   sklearn.model_selection.Kfold 
LOO:       sklearn.model_selection.LeaveOneOut 

Stratification:  
We usually use holdout or K-fold on shuffle data. By shuffling data we 
are trying to reproduce random trained validation split. But sometimes, 
especially if you do not have enough samples for some class, a random 
split can fail. 
Let’s consider following example. We have binary classification tests 
and a small data set with eight samples. Four of class 0, and four of 
class 1. Let's split the data into four folds. Done, but notice, we are not 
always getting 0 and 1 in the same problem. If we'll use the second 
fold for validation, we'll get an average value of the target in the train 
of 2/3 instead of 0.5. This can drastically change predictions of our 
model. What we need here to handle this problem is stratification. It is 
just the way to ensure we'll get similar target distribution over 
different folds. If we split data into four folds with stratification, the 
average of each false target values will be 0.5.  
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It is easy to guess significance 
of this problem is higher, first 
for small data sets, like in this 
e x a m p l e , s e c o n d f o r 
unbalanced data sets. And for 
binary classification, that 
could be, if target average 
were very close to 0 or vice 
versa, very close to 1. And 
t h i r d , f o r m u l t i - c l a s s 
classification tasks with huge 
amount of classes. For good 
c l a s s i f i c a t i o n da t a s e t s , 
stratification split will be quite 
similar to a simple shuffle 
split, i.e. to a random split.  

Stratification preserves the same target distribution over different folds. 
Read More. 

Data Splitting Strategies 
Since we already know the main strategies for validation, we can move 
to more concrete examples. Let's imagine, we're solving a competition 
with a time series prediction, 
namely, we are to predict a 
number of customers for a shop 
for which they’re due in next 
month. How should we divide the 
data into train and validation 
here? Basically, we have two 
possibilities. Having data frame 
first, we can take random rows in 
validation and second, we can 
make a time-based split, take 
everything before some date as 
a train and everything out there 
as a validation. 

Page �  of �2 30

https://www.coursera.org/learn/competitive-data-science/supplement/T4SVY/validation-strategies


In the first plot, we can just interpolate between the previous and the 
next value to get our predictions. Very easy, but wait. Do we really 
have future information about the number of customers in the real 
world? Well, probably not. But does this mean that this validation is 
useless? Again, it doesn't. What it does mean is that if we make train/
validation split different from train/test split, then we are going to 
create a useless model.  

And here, we get to the main rule of making a reliable validation. We 
should, if possible, set up validation to mimic train/test split, but 
that's a little later.  

On the second picture, for most of test point, we have neither the next 
value nor the previous one. Now, let's imagine we have a pool of 
different models trained on different features, and we selected the best 
model for each type of validation. Now, the question, will these models 
differ? And if they will, how 
significantly? Well, it is certain 
that if you want to predict what 
w i l l happen a f ew po i n t s 
later, then the model which favor 
features like previous and next 
target values wi l l perform 
poorly. It happens because in 
this case, we just don't have 
such observations for the test 
data. But we have to give the 
model something in the feature 
value, and it probably will be NaN 
or missing values. How much experience that model have with these 
type of situations? Not much. The model just won't expect that and 
quality will suffer. Now, let's remember the second case. Actually, here 
we need to rely more on the time trend. And so, the features, which is 
the model really we need here, are more like what was the trend in 
the last couple of months or weeks? So, that shows that the model 
selected as the best model for the first type of validation will perform 
poorly for the second type of validation.  

On the opposite, the best model for the second type of validation was 
trained to predict many points ahead, and it will not use adjacent 
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target values. So, to conclude this comparison, these models indeed 
differ significantly, including the fact that most useful features for one 
model are useless for another.  

But, the generated features are not the only problem here. Consider 
that actual train/test split is time-based, here is the question. If we 
carefully generate features that are drawing attention to time-based 
patterns, we'll get a reliable validation with a random-based split? Let 
me say this again in another words. If we'll create features which are 
useful for a time-based split 
and are useless for a random 
split, will be correct to use a 
random split to select the 
model? It's a tough question. 
Let's take a moment and 
think about it.  
Okay, now let's answer 
this. Consider the case when 
t a r g e t f o l l o w s a l i n e a r 
trade. In the first plot, we see the exact case of randomly chosen 
validation. In the second, we see the same time-based split as we 
considered before. First, let's notice that in general, model predictions 
will be close to targets mean value calculated using train data. So in 
the first plot, if the validation points will be closer to this mean value 
compared to test points, we'll get a better score in validation than on 
test. But in the second case, the validation points are roughly as far as 
the test points from target mean value. And so, in the second case, 
validation score will be more similar to the test score.  
Great, as we just found out, in the case of incorrect validation, not 
only features, but the value target can lead to unrealistic estimation of 
the score. 

Different splitting strategies can differ significantly, namely:  
1. In generated features,  
2. In the way the model will rely on that features, and  
3. In some kind of target leak.  

That means, to be able to find smart ideas for feature generation and 
to consistently improve our model, we absolutely want to identify 
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train/test split made by organizers, including the competition, and 
reproduce it. 

Let's now categorize most of these splitting strategies and 
competitions, and discuss examples for them.  

• Random, row-wise 
• Time Wise 
• By ID 
• Combined 

Let's start with the most basic one, the random split. The most 
common way of making a train/test split is to split data randomly by 
rows. This usually means that the rows are independent of each other. 
For example, we have a test of predicting if a client will pay off a loan. 
Each row represents a person, and these rows are fairly independent 
of each other. Now, let's consider that there is some dependency, for 
example, between family members or people which work in the same 
company. If a husband can pay a credit probably, his wife can do it 
too. That means if by some misfortune, a husband will will present in 
the train data and his wife will present in the test data. We probably 
can exploit this and devise a special feature for that case. For in such 
possibilities, and realizing that kind of features is really interesting.  

• Time base split 
We already discussed the vivid example of the split in the beginning of 
this video. In that case, we generally have everything before a 
particular date as a training data, and everything after date as a test 
data. This can be a signal to use special approach to feature 
generation, especially to make useful features based on the target. For 
example, if we are to predict a number of customers for the shop for 
each day in the next week, we can come up with something like the 
number of customers for the same day in the previous week, or the 
average number of customers for the past month. 
A special case of validation for the time-based split is a moving window 
validation. 
In the previous example, we can move the date which divides train 
and validation. Successively using week after week as a validation set, 
just like on this picture.  
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Let's discuss the ID-based split. 

For example, let's imagine we have to solve 
a task of music recommendations for 
completely new users. That means, we 
have different sets of users in train and 
test. If so, we probably can make a 
conclusion that features based on user's 
history, for example, how many songs user 
listened in the last week, will not help for 
completely new users. As an example of ID-
based split, I want to tell you a bit about the Caterpillar to pricing 
competition. In that competition, train/test split was done on some 
category ID, namely, tube ID. There is an interesting case when we 
should employ the ID-based split, but IDs are hidden from us. Here, I 
want to mention two examples of competitions with hidden ID-based 
split. These include Intel and MumbaiODT Cervical Cancer Screening 
competition, and The Nature Conservancy fisheries monitoring 
competition. In the first competition, we had to classify patients into 3 
classes, and for each patient, we had several photos. Indeed, photos 
of one patient belong to the same class. Again, sets of patients from 
train and test did not overlap. And we should also ensure these in the 
training regulations split.  

As another example, in The Nature Conservancy fisheries monitoring 
competition, there were photos of fish from several different fishing 
boats. Again, fishing boats and train and test did not overlap. So one 
could easily overfit if you would ignore this and make a random split. 
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Because the IDs were not given, competitors had to derive these IDs 
by themselves. In both these competitions, it could be done by 
clustering pictures.  

The easiest case was when pictures were taken just one after 
another, so the images were quite similar. You can find more details of 
such clustering in the kernels of these competitions.  

Now, having in these two main standalone methods, we also need to 
know that they sometimes may be combined. For example, if we 
have a task of predicting sales in a shop, we can choose a split in date 
for each shop independently, instead of using one date for every shop 
in the data. Or another example, if we have search queries from 
multiple users, is using several search engines, we can split the data 
by a combination of user ID and search engine ID. Examples of 
competitions with combined splits include the Western Australia Rental 
Prices competition by Deloitte and their qualification phase of data 
science game 2017. In the first competition, train/test was split by a 
single date, but the public/private split was made by different dates for 
different geographic areas.  

In the second competition, participants had to predict whether a user 
of online music service will listen to the song. The train/test split was 
made in the following way. For each user, the last song he listened to 
was placed in the test set, while all other songs were placed in the 
train set. These were the main splitting strategies employed in the 
competitions.  

Again, the main idea I want you to take away from this lesson is 
that your validation should always mimic train/test split made by 
organizers. It could be something non-trivial. For example, in the 
Home Depot Product Search Relevance competition, participants were 
asked to estimate search relevancy. In general, data consisted of 
search terms and search results for those terms, but test set contained 
completely new search terms. So, we couldn't use either a random 
split or a search term-based split for validation. First split favored 
more complicated models, which led to overfitting while second split, 
conversely, to under-fitting. So, in order to select optimal models, it 
was crucial to mimic the ratio of new search terms from train/test 
split.  
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We just demonstrated major data splitting strategies employed in 
competitions. Random split, time-based split, ID-based split, and their 
combinations. This will help us build reliable validation, make a useful 
decisions about feature generation, and in the end, select models 
which will perform best on the test data. As the main point of this 
video, remember the general rule of making a reliable validation. Set 
up your validation to mimic the train/test split of the competition. 

Problems Occurring During Validation 
• Validation Stage 
• Submission Stage 

In the previous videos we discussed the concept of validation and 
overfitting, and discussed how to chose validation strategy based on 
the properties of data we have. And finally we learned to identify data 
split made by organizers. After all this work being done, we honestly 
expect that the relation will, in a way, substitute a leaderboard for us. 
That is the score we see on the validation will be the same for the 
private leaderboard. Or at least, if we improve our model on validation, 
there will be improvements on the private leaderboard. And this is 
usually true, but sometimes we encounter some problems here. In 
most cases these problems can be divided into two groups. In the first 
group are there problems we encounter during local validation. Usually 
they are caused by inconsistency of the data, a widespread example is 
getting different optimal parameters for different folds. In this case we 
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need to make more thorough validation. The problems from the 
second group, often reveal themselves only when we send our 
submissions to the platform. And observe that scores on the validation 
and on the leaderboard don't match. In this case, the problem usually 
occurs because we can't mimic the exact train test split on our 
validation. These are tough problems, and we definitely want to be 
able to handle them. So before we start, let me provide an overview of 
this video. For both validation and submission stages we will discuss 
main problems, their causes, how to handle them.  

validation stage problems 
Usually, they attract our attention during validation. Generally, the 
main problem is a significant difference in scores and optimal 
parameters for different train validation splits. 

Let’s start with an example. Consider that we need to predict sales in a 
shop in February. Say we have target values for the last year, and, 
usually, we will take last month in the validation. This means January, 
but clearly January has much more holidays than February. And people 
tend to buy more, which causes target values to be higher overall. And 
that mean squared error of our predictions for January will be greater 
than for February. Does this mean that the module will perform worse 
for February? Probably not, at least not in terms of overfitting. As we 
can see, sometimes this kind of model behavior can be expected. But 
what if there is no clear reason why scores differ for different folds? 
Lets identify several common reasons for this and see what we can do 
about it.  

Too little data 
The first hypotheses we should consider is that we have too little data. 
For example, consider a case when we have a lot of patterns and 
trends in the data. But we do not have enough samples to generalize 
these patterns well.   
In that case, a model will utilize only some general patterns. And for 
each train/validation split, these patterns will partially differ.  This 
indeed, will lead to a difference in scores of the model. Furthermore, 
validation samples will be different each time only increasing the 
dispersion of scores for different folds. 
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Too Diverse and inconsistent data 
For example, if you have very similar samples with different target 
values, a model can be confused by them. 

Consider two cases: 
• First, if one of such samples is in the train while another is in the 

validation. We can get a pretty high error for the second sample. 

• The second case, if both samples are in validation, we will get 
smaller errors for them.  

• Or let's remember another example of diverse data we have already 
discussed a bit earlier. The example of predicting sales for January 
and February. Here we have the nature or the reason for the 
differences in scores. 

As a quick note, notice that in this example, we can reduce this 
diversity a bit if we will validate on the February from the previous 
year. So the main reasons for a difference in scores and optimal model 
parameters for different folds are, first, having too little data, 
and second, having too diverse and inconsistent data. 

What can we do? 
If we are facing this kind of problem, it can be useful to make more 
thorough validation.  
1. You can increase K in KFold, but usually 5 folds are enough.  
2. Make KFold validation several times with different random splits 

(seeds). And average scores to get a more stable estimate of 
model's quality.  
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The same way we can choose the 
best parameters for the model if 
there is a chance to overfit. It is 
useful to use one set of KFold 
spl its to select parameters 
and another set of KFold splits to 
check model's quality.  

Examples of competitions which required extensive validation include 
the Liberty Mutual Group Property Inspection Prediction competition 
and the Santander Customer Satisfaction competition. In both of 
them, scores of the competitors were very close to each other. And 
thus participants tried to squeeze more from the data. But do not 
overfit, so the thorough validation was crucial. 

Submission stage problems 

• LB score is consistently higher/lower than validation score. 
• LB score is not correlated to the validation score at all. 
  
Sometimes you can diagnose these problems in the process of doing 
careful. But still, often you encounter these type of problems only 
when you submit your solution to the platform. But then again, EDA is 
your friend when it comes down to finding the root of the problem. 
Generally speaking, there are two cases of these issues. In the first 
case, leaderboard score is consistently higher or lower than validation 
score. In the second, leaderboard score is not correlated with 
validation score at all. 
So in the worst case, we can improve our score on the validation. 
While, on the contrary, score on the leaderboard will decrease. As you 
can imagine, these problems can be much more trouble. Now 
remember that the main rule of making a reliable validation, is to 
mimic a train/test split made by organizers. I won't lie to you, it can 
be quite hard to identify and mimic the exact train/test here. Because 
of that, I highly recommend you to start submitting your solutions 
right after you enter the competition. 
It's good to start exploring other possible roots of this problem. Let's 
first sort out causes we could observe during validation stage. 
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•  We may already have quite different scores in KFold.  
 Here it is useful to see a leaderboard as another validation fold.  Then, 
if we already have different scores in KFold, getting a not very similar 
result on the leaderboard is not surprising. More we can calculate 
mean and standard deviation of the validation scores and estimate if 
the leaderboard score is expected. But if this is not the case, then 
something is definitely wrong.  
There could be two more reasons for this problem.  

- We already have different scores in KFold  
- The first reason: Too little data in public leaderboard, which is pretty 

self explanatory. Just trust your validation, and everything will be 
fine.  

- The second train and test data are from different distributions. 

Now, because our course is a practical one, let's take a moment 
and think what you can do if you encounter these in a competition.  

Let me explain what I mean when I talk 
about different distributions. Consider a 
regression task of predicting people's 
height by their photos on Instagram. 
The blue line represents the distribution 
of heights for man, while the red line 
represents the distribution of heights for 
women. As you can see, these 
distributions are different. Now let's 
consider that the train data consists 
only of women, while the test data 
consists only of men. Then all model 
predictions will be around the average 
height for women. And the distribution of these predictions will be very 
similar to that for the train data. No wonder that our model will have a 
terrible score on the test data. Now, because our course is a practical 
one, let's take a moment and think what you can do if you encounter 
this in a competition. 

Let's start with a general approach to such problems. At the broadest 
level, we need to find a way to tackle different distributions in train 
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and test. Sometimes, these kind of problems could be solved by 
adjusting your solution during the training procedure. But sometimes, 
this problem can be solved only by adjusting your solution through the 
leaderboard. That is through leaderboard probing. The simplest way to 
solve this particular situation in a competition is to try to figure out the 
optimal constant prediction for train and test data. And shift your 
predictions by the difference. Right here we can calculate the average 
height of women from the train data. 

Calculating the average height of men is a bit trickier. If the 
competition's metric is means squared error, we can send two constant 
submissions, write down the simple formula. And find out that the 
average target value for the test is equal to 70 inches. In general, this 
technique is known as leaderboard probing. And we will discuss it in 
the topic about leaks. So now we know the difference between the 
average target values for the train and the test data, which is equal to 
7 inches. And as the third step of adjusting our submission to the 
leaderboard we could just try to add 7 to all predictions. But from this 
point it is not validational it is a leaderboard probing and list. Yes, we 
probably could discover this during exploratory data analysis and try to 
make a correction in our validation scheme. But sometimes it is not 
possible without leaderboard probing, just like in this example. A 
competition which has something similar is the Quora question pairs 
competition. There, distributions of the target from train and test were 
different. So one could get a good improvement of a score adjusting 
his predictions to the leaderboard.  

But fortunately, this case is rare enough. More often, we encounter 
situations which are more like the 
following case. Consider that now 
train consists not only of women, 
but mostly of women, and test, 
consists not only of men, but mostly 
of men. 

The main strategy to deal with these 
kind of situations is simple. Again, 
remember to mimic the train test 
split. If the test consists mostly of 
Men, force the validation to have the 
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same distribution. In that case, you ensure that your validation will be 
fair.  

This is true for getting both scores and optimal parameters correctly. 
For example, we could have quite different scores and optimal 
parameters for women's and men's parts of the data set.  

Ensuring the same distribution in test and validation helps us get 
scores and parameters relevant to test. I want to mention two 
examples of this here. First the Data Science Game Qualification 
Phase: Music recommendation challenge. And second, competition 
with CTR prediction which we discussed earlier in the data topic. Let's 
start with the second one, do you remember the problem? we have a 
task of predicting CTR. So, the train data, which basically was the 
history of displayed ads obviously didn't contain ads which were not 
shown. On the contrary, the test data consisted of every possible ad. 
Notice this is the exact case of different distributions in train and test. 
And again, we need to set up our validation to mimic test here. So we 
have this huge bias towards showing ads in the train and to set up a 
correct validation. We had to complete the validation set with rows of 
not shown ads.  

Now, let's go back to the first example. In that competition, 
participants had to predict whether a user will listen to a song 
recommended by the system. So, the test contained only 
recommended songs. But train, on the contrary, contained both 
recommended songs and songs users selected themselves. So again, 
one could adjust his validation by 50 renowned songs selected by 
users. And again, if we will not account for that fact, then improving 
our model on actually selected songs can result in the validation score 
going up. But it doesn't have to result and the same improvements for 
the leaderboard.  

Okay let's conclude this overview of handling validation problems 
for the submission stage. If you have too little data in public 
leaderboard, just trust your validation. If that's not the case, make 
sure that you did not overfit. Then check if you made correct train/test 
split, as we discussed in the previous video. And finally, check if you 
have different distributions in train and test. 
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Great, let's move on to the next point of this video. For now, I hope 
you did everything all right: 

• First, you did extensive validation.  
• Second, you choose a correct splitting strategy for train/validation 

split. 
• Finally, you ensured the same distributions in validation and test.  

But sometimes you have to expect leaderboard shuffle anyway, and 
not just for you, but for everyone. First, for those who never heard of 
it, a leaderboard shuffle happens when participants position some 
public and private leaderboard drastically differ. Take a look at this 
screenshot from the two sigma financial model in challenge 
competition. The green and the red arrows mean how far a team 
moved. For example, the participant who finished the 3rd on the 
private leaderboard was the 392nd on the public leaderboard. Let's 
discuss three main reasons for that shuffle, randomness, too little 
data, and different public, private distributions. So first, randomness, 
this is the case when all participants have very similar scores. This can 
be either a very good score or a very poor one. But the main point 
here is that the main reason for differences in scores is randomness. 
To understand this a bit more, let's go through two quick examples 
here. The first one is the Liberty Mutual Group, Property Inspection 
Prediction competition. In that competition, scores of competitors were 
very close. And though randomness didn't play a major role in that 
competition, still many people overfit on the public leaderboard. The 
second example, which is opposite to the first is the TWO SIGMA 
Financial Model and Challenge competition. Because the financial data 
in that competition was highly unpredictable, randomness played a 
major role in it. So one could say that the leaderboard shuffle there 
was among the biggest 
shuff les on Kaggle 
platform. 
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Okay, that was randomness, the second reason to expect leaderboard 
shuffle is too little data overall, and in private test set especially. An 
example of this is the Restaurant Revenue Prediction Competition. In 
that competition, training set consisted of less than 200 rows. And this 
set consisted of less than 400 rows. So as you can see shuffle here 
was more than expected.  

Last reason of leaderboard shuffle could be different distributions 
between public and private test sets. This is usually the case with time 
series prediction, like the Rossmann Stores Sales competition. When 
we have a time-based split, we usually have first few weeks in public 
leaderboard, and next few weeks in private leaderboard. As people 
tend to adjust their submission to public leaderboard and overfit, we 
can expect worse results on private leaderboard. Here again, trust 
your validation and everything will be fine. Okay, that is all with 
reasons for leaderboard shuffling. 

Conclusion 
Now let's conclude both this video and the entire validation topic. Let's 
start with the video.  
• First, if you have big dispersion of scores on validation stage we 

should do extensive validation. That means  
   - every score from different KFold splits, and  
   - tune model on one split while evaluating score on the other.  

• Second, if submission do not match local validation score, we should.        
-  first, check if we have too little data in public leaderboard.                     
- Second, check if we did not overfit,                                                      
- check if you chose correct splitting strategy.                                          
- And finally, check if trained test have different distributions.  

You can expect leaderboard shuffle because of three key things, 
randomness, little amount of data, and different public/private test 
distributions. So that's it, in this topic we defined validation and its 
connection to overfitting. Described common validation strategies. 
Demonstrated major data splitting strategies. And finally analyzed and 
learned how to tackle main validation problems. Remember this, and it 
will absolutely help you out in competitions. Make sure you understand 
the main idea of validation well. That is, you need to mimic the train/
test split. 
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Practice Quiz 
1- Suppose we are given a huge dataset. We did a KFold validation once and 
noticed that scores on each fold are roughly the same. Which validation type 
is most practical to use?  
A. We can use a simple hold out validation scheme bc the data is 

homogenous. 
B. We should keep on using Kfold scheme as data is homogenous and Kfold 

is the most computationally efficient scheme. 
C. LOO bc the data is not homogenous. 

2- Suppose we are given a medium-sized dataset and we did a KFold 
validation once. We noticed that scores on each fold differ noticeably. Which 
validation type is the most practical to use? 
A. Hold out 
B. LOO 
C. Kfold 

3- The features we generate depend on the train-test data splitting method. 
Is this true? 
A. False 
B. True 

4- What of these can indicate an expected leaderboard shuffle in a 
competition? 
A. Most of the competitions have similar scores. 
B. Little amount of training and/or testing data. 
C. Different public/private data or target distributions. 

Quiz 
1- Select true statements 
A. Underfitting refers to not capturing enough patterns in the data 
B. We use validation to estimate the quality of our model 
C. The model, that performs best on the validation set is guaranteed 

to be the best on the test set. 
D. Performance increase on a fixed cross-validation split guaranties 

performance increase on any cross-validation split. 
E. The logic behind validation split should mimic the logic behind train-

test split. 
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2- Usually on Kaggle it is allowed to select two final submissions, 
which will be checked against the private LB and contribute to the 
competitor's final position. A common practice is to select one 
submission with a best validation score, and another submission which 
scored best on Public LB. What is the logic behind this choice? 

A. Generally, this approach is based on the assumption that people 
rarely tend to overfit to the Public LB. Almost always you have a lot 
of data in the test set and it is quite hard to overfit. Indeed, this 
render validation useless. 

B. Generally, this approach is based on the assumption that the test 
data may have a different target distribution compared to the train 
data. If that would be the true, the submission which was chosen 
based on Public LB, will perform better. If, otherwise, the above 
distributions will be similar, the submission which was chosen based 
on validation scores, will perform better. 

C. Generally, this approach is based on the assumption that validation 
is rarely valid in competitions. Often it is hard to trust your 
validation and thus you should account for both cases if the 
validation will succeed and if the validation will fail. 

3- Suppose we have a competition where we are given a dataset of 
marketing campaigns. Each campaign runs for a few weeks and for 
each day in campaign we have a target - number of new customers 
involved. Thus the row in a dataset looks like 
Campaign_id, Date, {some features}, Number_of_new_customers 

Test set consists of multiple campaigns. For each of them we are given 
several first days in train data. For example, if a campaign runs for two 
weeks, we could have three first days in train set, and all next days 
will be present in the test set. For another campaign, running for 
weeks, we could have the first 6 days in the train set, and the 
remaining days in the test set. 

Identify train/test split in a competition. 

A. Id-based split 
B. Combined split 
C. Random 
D. Time based 
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4- Which of the following problems you usually can identify without the 
Leaderboard? 

A.  Train and test target distribution are from different distributions 
B.  Public leaderboard score will be unreliable because of too little data 
C.  Different scores/optimal parameters between folds 
D.  Train and test data are from different distributions 

	 •	 Validation in Sklearn


	 •	 Advices on validation in a competition


Data Leakage 
Basic Data Leaks 
In this section, we will talk about a very sensitive topic data leakage or 
more simply. We'll define leakage in a very general sense as an 
unexpected information in the data that allows us to make 
unrealistically good predictions. For the time being, you may have 
think of it as of directly or indirectly adding ground truths into the test 
data. Data leaks are very, very bad. They are completely unusable in 
real world. They usually provide way too much signal and thus make 
competitions lose its main point, and quickly turn them into a leak 
hunt race. 
Further in this section, I will show you the main types of data 
leaks that could appear during solving a machine learning problem.  

• Leakage types and examples 
• Competition specific. Leaderboard Probing 
• Concrete Walkthrough 

Also focus on a competition specific leak exploitation technique 
leaderboard probing. Finally, you will find special videos dedicated to 
the most interesting and non-trivial data leaks. I will start with the 
most typical data leaks that may occur in almost every problem.  

Time series is our first target. Typically, future picking. It is common 
sense not to pick into the future like, can we use stock market's price 

Page �  of �19 30

http://scikit-learn.org/stable/modules/cross_validation.html
http://www.chioka.in/how-to-select-your-final-models-in-a-kaggle-competitio/


from day after tomorrow to 
predict price for tomorrow? Of 
course not.  

However, direct usage of future 
information in incorrect time 
splits still exist. When you enter 
a time serious competition at 
first, check train, public, and 
private splits. If even one of 
them is not on time, then you 
found a data leak. In such case, unrealistic features like prices next 
week will be the most important. But even when split by time, data 
still contains information about future. We still can access the rows 
from the test set. We can have future user history in CTR task, some 
fundamental indicators in stock market predictions tasks, and so 
on. There are only two ways to eliminate the possibility of data 
leakage. It's called competitions, where one can not access rows from 
future or a test set with no features at all, only IDs.  

For example, just day number and instrument ID in stock market 
prediction, so participants create features based on past and join them 
themselves.  

Now, let's discuss something more unusual. Those types of data leaks 
are much harder to find. We often have more than just train and test 
files. For example, a lot of images or text in archive. In such case, we 
can access some meta information, file creation date, image resolution 
etcetera. It turns out that this meta information may be connected to 
target variable. Imagine classic cats versus dogs classification. What if 
cat pictures were taken before dog? Or taken with a different 
camera? Because of that, a good practice from organizers is to erase 
the meta data, resize the pictures, and change creation 
date. Unfortunately, sometimes we will forget about it. A good 
example is Truly Native competition, where one could get nearly 
perfect scores using just the dates from zip archives. 

Another type of leakage could be found in IDs. IDs are unique identifiers of 
every row usually used for convenience. It makes no sense to include them 
into the model. It is assumed that they are automatically generated. In 
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reality, that's not always true. ID 
may be a hash of something, 
p r o b a b l y n o t i n t e n d e d f o r 
disclosure. It may contain traces of 
information connected to target 
variable. It was a case in Caterpillar 
competition.  

A link ID as a feature slightly 
improve the result. So I advise 
you to pay close attention to IDs 
and always check whether they are useful or not. Next is row order. In 
trivial case, data may be shuffled by target variable. Sometimes simply 
adding row number or relative number, suddenly improves this 
course. Like, in Telstra Network Disruptions competition. It's also 
possible to find something way more interesting like in TalkingData 
Mobile User Demographics competition. There was some kind of row 
duplication, rows next to each other usually have the same label. This 
is it with a regular type of leaks. To sum things up, in this video, we 
embrace the concept of data leak and cover data leaks from future 
picking, meta data, IDs, and row order.  

Leaderboard probing and examples of rare data leaks 

Now, I will tell you about a competition-specific technique tightly 
connected with data leaks. It's leaderboard probing. There are actually 
two types of leaderboard probing. The first one is simply extracting all 
ground truth from public part 
of the leaderboard. It's usually 
pretty harmless, only a little 
more of straining data. It is also 
a relatively easy to do and I 
have a submission change on 
the small set of rows so that you 
can unambiguously calculate 
ground truth for those rows from 
leaderboard score.  

I suggest checking out the link to Alek Trott's post in additional 
materials. He thoroughly explains how to do it very efficiently with 
minimum amount of submissions. Perfect score script by Oleg Trott 
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Our main focus will be on another type of leaderboard 
probing. Remember the purpose of public, private 
split. It's supposed to protect private part of test set from 
information extraction. It turns out that it's still 
vulnerable. Sometimes, it's possible to submit predictions 
in such a way that will give out information about private 
data. It's all about consistent categories. Imagine, a 
chunk of data with the same target for every row. Like in 
the example, rows with the same IDs have the same 
target. Organizers split it into public and private parts.  

But we still know that that particular chunk has the same label for 
every role. After setting all the predictions close to 0 in our submission 
for that particular chunk of data, we can expect two outcomes. The 
first one is when score improved, it means that ground truth in public 
is 0. And it also means  
that ground truth in private is 0 as well. Remember, our chunk has the 
same labels.  

The second outcome is when the score became worse. Similarly, it 
means that ground truth in both public and private is 1. Some 
competitions indeed have that kind of categories. Categories that with 
high certainty have the same label.  
You could have encountered those type of categories in Red Hat 
and West Nile competitions. It was a key for winning. With a lot of 
submissions, one can explore a good part of private test set.  

It's probably the most annoying type of data leak. It's mostly technical 
and even if it's released close to the competition deadline, you simply 
won't have enough submissions to fully exploit it.  

Furthermore, this is on the tip of the iceberg. When I say consistent 
category, I do not necessarily mean that this category has the same 
target. It could be consistent in different ways. The definition is quite 
broad. For example, target label could simply have the same 
distribution for public and private parts of data. It was the case in 
Quora Question Pairs competition. In that competition there was a 
binary classification task being evaluated by log loss metric. What's 
important target variable had different distributions in train and test, 
but allegedly the same and private and public parts of these data. And 
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because of that, we could benefit a lot via leaderboard 
probing. Treating the whole test set as a consistent category.  

Take a look at the formula on the 
slide. This logarithmic loss for 
submission with constant predictions 
C big. Where N big is the real number 
of rows, N1 big is the number of rows 
with target one. And L big is the 
leader board score given by that 
constant predict ion. From this 
equation, we can calculate N1 divided 
by N or in other words, the true ratio 
of ones in the test set . That 
knowledge was very beneficial. We 
could use it rebalance training data 
points to have the same distribution of target variable as in the test 
set. This little trick gave a huge boost in leaderboard score. As you can 
see, leaderboard probing is a very serious problem that could occur 
under a lot of different circumstances. I hope that someday it will 
become complete the eradicated from competitive machine learning.  

Now, finally, I like to briefly walk through the most peculiar 
and interesting competitions with data leakage.  

And first, let's take a look at Truly Native competition from different 
point of view. In this competition, 
participants were asked to predict 
whether the content in an HTML file 
is sponsored or not. As was already 
discussed in previous video, there 
was a data leak in archive dates. We 
can assume that sponsored and non-
sponsored HTML files were gotten 
during different periods of time.  
So do we really get rid of data leak 
after erasing archive dates?  

The answer is no. Texts in HTML files may be connected to dates in a 
lot of ways. From explicit timestamps to much more subtle things, like 
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news contents. As you’ve probably already realized, the real problem 
was not metadata leak, but rather data collection. Even without meta 
information, machine learning algorithms will focus on actually useless 
features. The features that only act as proxies for the date.  

The next example is Expedia Hotel Recommendations, and that 
competit ions, participants worked with logs of customer 
behavior. These include what customers searched for, how they 
interacted with search results, and clicks or books, and whether or not 
the search result was a travel package.  

Exped i a was i n t e res ted i n 
predicting which hotel group a 
user is going to book. Within the 
logs of customer behavior, there 
was a very tricky feature. A 
distance from users seeking (city 
to?) their hotel. Turned out, that 
this feature is actually a huge 
data leak. Using this distance, it 
was possible to reverse engineer two coordinates, and simply map 
ground truth from train set to the test set.  

I strongly suggest you to check out 
the special video dedicated to this 
competition. I hope that you will 
find it very useful because the 
app roaches and me thods o f 
exploiting data leak were extremely 
nontrivial. And you will find a lot of 
interesting tricks in it.  

The next example is from Flavors of 
Physics competition. It was a pretty 
complicated problem dealing with 
physics at Large Hadron Collider. The special thing about that competition 
was that signal was artificially simulated. Organizers wanted a machine 
learning solution for something that has never been observed. That's why 
the signal was simulated.  
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But simulation cannot be perfect and it's possible to reverse engineer 
it. Organizers even created special statistical tests in order to punish the 
models that exploit simulation flaws. However, it was in vain. One could 
bypass the tests, fully exploit simulation flaws, and get a perfect score on 
the leaderboard.  

The last example is going to cover pairwise tasks. Where one needs to 
predict whether the given pair of items 
are duplicates or not, like in Quora 
question pairs competition.  

There is one thing common to all the 
c o m p e t i t i o n s w i t h p a i r w i s e 
tasks. Participants are not asked to 
evaluate all possible pairs. There is 
always some nonrandom subsampling, 
and this subsampling is the cause of 
data leakage. Usually, organizers sample 
most ly hard-to-dist inguish pairs. 
Because of that, of course, imbalance in item frequencies. It results in more 
frequent items having the higher possibility of being duplicates. But that's 
not all. We can create a connectivity matrix N times N, where N is the total 
number of items. If item i and item j appeared in a pair then we place 1 in 
(i,j) and (j,i) positions. Now, we can treat the rows in connectivity matrix as 
vector representations for every item. This means that we can compute 
similarities between those vectors. This tricks works for a very simple 
reason.  

When two items have similar sets of neighbors they have a high possibility of 
being duplicates.  

• Page about data leakages on Kaggle 

Expedia Challenge 

In that competition, we worked with lots of customer behavior. These include 
what customers searched for, how they interacted with search results, clicks 
or books, and whether or not the search result was a travel package, and 
Expedia was interested in predicting which hotel group a user is going to 
book. Important thing here is prediction target the hotel group. In other 
words, characteristics of actual hotel, remember it. As it turned out, this 
competition had a very non-trivial and extremely hard to exploit data 
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leak. From the first glance, data leak was pretty straightforward. We had a 
destination distance among the feature. It's a distance from user city to an 
actual hotel he clicked on booked. And, as I said earlier, our prediction target 
is a characteristic of an actual hotel. Furthermore, destination distance 
was very precise so unique user city and destination distance 
pairs corresponded to unique hotels. Putting two and two together, we can 
treat user city and destination distance pair as a proxy to our target.  

When in this set, we encountered such pair already present in train 
set, we could simply take a label from there as our prediction. It 
worked nearly perfect for the pairs present in both train and 
test. However, nearly half of test set consisted from new pairs without 
a match from train set. This way we had to go deeper. But, how 
exactly can we improve our solution? Well, there are two different 
ways. First, one is to create count features on corteges similar to user 
city and destination distance pair. For example, like how many hotels 
of which group there are for user city, hotel country, hotel city 
triplet. Then, we could train some machine learning model on such 
features. Another way is to somehow 
find more matches. For that purpose, 
we need to find true coordinates of 
users cities and hotel cities. From that, 
to guess it was destination distance 
feature, it was possible to find good 
approximation for the coordinates of 
actual hotels. Let's find out how to do 
it. First of all, we need to understand 
how to calculate the distance. Here, 
we work with geographical coordinates 
so the distances are geodesic. It's done 
via Haversine formula, not a pleasant one.  
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Now, suppose that we know true coordinates of three points and 
distances from fourth point with unknown coordinates to each of 
them, if you write down a system of three equations, one for each 
distance, we can unambiguously solve it and get true coordinates for 
the fourth point. Now, we have four points with known coordinates. I 
think you get the idea. So, at first, by hook or by crook, we reverse 
engineer true coordinate of three big cities. After that, we can 
iteratively find coordinates of more and more cities. But as you can see 
from the picture, some cities ended up in oceans. It means that our 
algorithm is not very precise. A rounding error accumulates after every 
iteration and everything starts to fall apart. We get some different 
method and indeed we can do better. Just compare this picture with 
the previous one. It's obviously much more accurate. Remember how 
in iterative method we solved a system of three equations to 
unambiguously find coordinates or fourth unknown point. But why limit 
ourselves with three equations? Let's create a giant system of 
equations from all known distances with true coordinates being the 
known variables. We end 
u p w i t h l i t e r a l l y 
hundreds or thousands 
of equations and tens of 
thousands of unknown 
variables. Good thing it's 
very sparse. We can 
apply special methods 
from SciPy to efficiently 
solve such a system. In 
the end, after solving 
t h a t s y s t e m o f 
equations, we end up with a very precise coordinates for both hotel 
cities and user cities. But as you remember, we're predicting a type of 
a hotel. Using city coordinates and destination distance, it's possible to 
find an approximation of true coordinates of an actual hotel. When we 
fix user city and draw a circumference around it with the radius of 
destination distance, it's obvious that true hotel location must be 
somewhere on that circumference. Now, let's fix some hotel city and 
draw such circumferences from all users cities to that fixed hotel cities 
and draw them for every given destination distance. After doing so, we 
end up with pictures like the ones on the slide. A city contains a 
limited number of hotels so the intuition here is that hotels actually are 
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on the intersection points and the more circumferences intersect in 
such point, the higher the probability of a hotel being in that point. As 
you can see, the pictures are beautiful but pretty messy.  

It's impossible to operate in 
t e rms o f s i ngu l a r po i n t s . 
However, there are explicit 
clusters of points and this 
information can be of use. We 
can do some kind of integration. 
For every city, let's create a grid 
around its center.  

Something like 10 kilometers 
times 10 kilometers with step size of 100 meters. Now, using training 
data, for every cell in the grid, we can count how many hotels of which 
type are present there. If a circumference goes through a cell, we give 
plus one to the hotel type corresponding to that circumference. During 
inference, we also draw a circumference based on destination distance 
feature. We see from what degree its cells it went through and use 
information from those cells to create features like a sum of all 
counters, average of all counters, maximum of all counters and so 
on. Great. We have covered the part of feature engineering. Note that 
all the features directly used target label. We cannot use them as is in 
training. We should generate them in out-of-fold fashion for train 
data. So we had training data for years 2013 and 2014. To generate 
features for year 2014, we used labelled data from year 2013 and vice 
versa, used the year 2014 to generate features for the year 2013. For 
the test features, which was from year 2015, we naturally used all 
training data. In the end, we calculated a lot of features and shoved 
them into XGBoost model. After 16 hours of training for the course, we 
got our results. We ended up on third position on public leader-boards 
and forth on private. We did good, but we still did not fully exploit data 
leakage. If you check the leaderboard, you'll notice the difference in 
scores between first place and the rest. Under speculation, the winner 
did extraordinary. Although, in general, his methods were very similar 
to ours. He was able to extract way more signal. Finally, I hope you 
enjoyed my story. As you can see, sometimes working with data 
leakage could be very interesting and challenging. You may develop 
some unusual skills and broaden your horizons. 
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Quiz 

1. Suppose that you have a credit scoring task, where you have to 
create a ML model that approximates expert evaluation of an 
individual's creditworthiness. Which of the following can potentially 
be a data leakage? Select all that apply. 

A. First half of the data points in the train set has a score of 0, while 
the second half has scores > 0 

B. An ID of a data point (row) in the train set correlates with target 
variable. 

C. Among the features you have a company_id, an identifier of a 
company where this person works. It turns out that this feature is 
very important and adding it to the model significantly improves 
your score. 

2. What is the most foolproof way to set up a time series competition? 

A. Split train, public and private parts of data by time. Remove all 
features except IDs (e.g. timestamp) from test set so that 
participants will generate all the features based on past and join 
them themselves. 

B. Split train, public and private parts of data by time. Remove time 
variable from test set, keep the features. 

C. Make a time based split for train/test and a random split for public/
private. 

3. Suppose that you have a binary classification task being evaluated 
by logloss metric. You know that there are 10000 rows in public 
chunk of test set and that constant 0.3 prediction gives the public 
score of 1.01. Mean of target variable in train is 0.44. What is the 
mean of target variable in public part of test data (up to 4 decimal 
places)? 
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4. Suppose that you are solving image classification task. What is the 
label of this picture? 
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