
WEEK 2 - Part 2
Validation Strategies
• Hold out (Just one validation set.)
• K-Fold
• Leave One Out = K-fold when k=n.

HoldOut: sklearn.model_selection.ShuffleSplit
K-Fold : sklearn.model_selection.Kfold
LOO: sklearn.model_selection.LeaveOneOut

Stratification:
We usually use holdout or K-fold on shuffle data. By shuffling data we
are trying to reproduce random trained validation split. But sometimes,
especially if you do not have enough samples for some class, a random
split can fail.
Let’s consider following example. We have binary classification tests
and a small data set with eight samples. Four of class 0, and four of
class 1. Let's split the data into four folds. Done, but notice, we are not
always getting 0 and 1 in the same problem. If we'll use the second
fold for validation, we'll get an average value of the target in the train
of 2/3 instead of 0.5. This can drastically change predictions of our
model. What we need here to handle this problem is stratification. It is
just the way to ensure we'll get similar target distribution over
different folds. If we split data into four folds with stratification, the
average of each false target values will be 0.5.

Page � of �1 30

It is easy to guess significance
of this problem is higher, first
for small data sets, like in this
e x a m p l e , s e c o n d f o r
unbalanced data sets. And for
binary classification, that
could be, if target average
were very close to 0 or vice
versa, very close to 1. And
t h i r d , f o r m u l t i - c l a s s
classification tasks with huge
amount of classes. For good
c l a s s i f i c a t i o n da t a s e t s ,
stratification split will be quite
similar to a simple shuffle
split, i.e. to a random split.

Stratification preserves the same target distribution over different folds.
Read More.

Data Splitting Strategies
Since we already know the main strategies for validation, we can move
to more concrete examples. Let's imagine, we're solving a competition
with a time series prediction,
namely, we are to predict a
number of customers for a shop
for which they’re due in next
month. How should we divide the
data into train and validation
here? Basically, we have two
possibilities. Having data frame
first, we can take random rows in
validation and second, we can
make a time-based split, take
everything before some date as
a train and everything out there
as a validation.

Page � of �2 30

https://www.coursera.org/learn/competitive-data-science/supplement/T4SVY/validation-strategies

In the first plot, we can just interpolate between the previous and the
next value to get our predictions. Very easy, but wait. Do we really
have future information about the number of customers in the real
world? Well, probably not. But does this mean that this validation is
useless? Again, it doesn't. What it does mean is that if we make train/
validation split different from train/test split, then we are going to
create a useless model.

And here, we get to the main rule of making a reliable validation. We
should, if possible, set up validation to mimic train/test split, but
that's a little later.

On the second picture, for most of test point, we have neither the next
value nor the previous one. Now, let's imagine we have a pool of
different models trained on different features, and we selected the best
model for each type of validation. Now, the question, will these models
differ? And if they will, how
significantly? Well, it is certain
that if you want to predict what
w i l l happen a f ew po i n t s
later, then the model which favor
features like previous and next
target values wi l l perform
poorly. It happens because in
this case, we just don't have
such observations for the test
data. But we have to give the
model something in the feature
value, and it probably will be NaN
or missing values. How much experience that model have with these
type of situations? Not much. The model just won't expect that and
quality will suffer. Now, let's remember the second case. Actually, here
we need to rely more on the time trend. And so, the features, which is
the model really we need here, are more like what was the trend in
the last couple of months or weeks? So, that shows that the model
selected as the best model for the first type of validation will perform
poorly for the second type of validation.

On the opposite, the best model for the second type of validation was
trained to predict many points ahead, and it will not use adjacent

Page � of �3 30

target values. So, to conclude this comparison, these models indeed
differ significantly, including the fact that most useful features for one
model are useless for another.

But, the generated features are not the only problem here. Consider
that actual train/test split is time-based, here is the question. If we
carefully generate features that are drawing attention to time-based
patterns, we'll get a reliable validation with a random-based split? Let
me say this again in another words. If we'll create features which are
useful for a time-based split
and are useless for a random
split, will be correct to use a
random split to select the
model? It's a tough question.
Let's take a moment and
think about it.
Okay, now let's answer
this. Consider the case when
t a r g e t f o l l o w s a l i n e a r
trade. In the first plot, we see the exact case of randomly chosen
validation. In the second, we see the same time-based split as we
considered before. First, let's notice that in general, model predictions
will be close to targets mean value calculated using train data. So in
the first plot, if the validation points will be closer to this mean value
compared to test points, we'll get a better score in validation than on
test. But in the second case, the validation points are roughly as far as
the test points from target mean value. And so, in the second case,
validation score will be more similar to the test score.
Great, as we just found out, in the case of incorrect validation, not
only features, but the value target can lead to unrealistic estimation of
the score.

Different splitting strategies can differ significantly, namely:
1. In generated features,
2. In the way the model will rely on that features, and
3. In some kind of target leak.

That means, to be able to find smart ideas for feature generation and
to consistently improve our model, we absolutely want to identify

Page � of �4 30

train/test split made by organizers, including the competition, and
reproduce it.

Let's now categorize most of these splitting strategies and
competitions, and discuss examples for them.

• Random, row-wise
• Time Wise
• By ID
• Combined

Let's start with the most basic one, the random split. The most
common way of making a train/test split is to split data randomly by
rows. This usually means that the rows are independent of each other.
For example, we have a test of predicting if a client will pay off a loan.
Each row represents a person, and these rows are fairly independent
of each other. Now, let's consider that there is some dependency, for
example, between family members or people which work in the same
company. If a husband can pay a credit probably, his wife can do it
too. That means if by some misfortune, a husband will will present in
the train data and his wife will present in the test data. We probably
can exploit this and devise a special feature for that case. For in such
possibilities, and realizing that kind of features is really interesting.

• Time base split
We already discussed the vivid example of the split in the beginning of
this video. In that case, we generally have everything before a
particular date as a training data, and everything after date as a test
data. This can be a signal to use special approach to feature
generation, especially to make useful features based on the target. For
example, if we are to predict a number of customers for the shop for
each day in the next week, we can come up with something like the
number of customers for the same day in the previous week, or the
average number of customers for the past month.
A special case of validation for the time-based split is a moving window
validation.
In the previous example, we can move the date which divides train
and validation. Successively using week after week as a validation set,
just like on this picture.

Page � of �5 30

Let's discuss the ID-based split.

For example, let's imagine we have to solve
a task of music recommendations for
completely new users. That means, we
have different sets of users in train and
test. If so, we probably can make a
conclusion that features based on user's
history, for example, how many songs user
listened in the last week, will not help for
completely new users. As an example of ID-
based split, I want to tell you a bit about the Caterpillar to pricing
competition. In that competition, train/test split was done on some
category ID, namely, tube ID. There is an interesting case when we
should employ the ID-based split, but IDs are hidden from us. Here, I
want to mention two examples of competitions with hidden ID-based
split. These include Intel and MumbaiODT Cervical Cancer Screening
competition, and The Nature Conservancy fisheries monitoring
competition. In the first competition, we had to classify patients into 3
classes, and for each patient, we had several photos. Indeed, photos
of one patient belong to the same class. Again, sets of patients from
train and test did not overlap. And we should also ensure these in the
training regulations split.

As another example, in The Nature Conservancy fisheries monitoring
competition, there were photos of fish from several different fishing
boats. Again, fishing boats and train and test did not overlap. So one
could easily overfit if you would ignore this and make a random split.

Page � of �6 30

Because the IDs were not given, competitors had to derive these IDs
by themselves. In both these competitions, it could be done by
clustering pictures.

The easiest case was when pictures were taken just one after
another, so the images were quite similar. You can find more details of
such clustering in the kernels of these competitions.

Now, having in these two main standalone methods, we also need to
know that they sometimes may be combined. For example, if we
have a task of predicting sales in a shop, we can choose a split in date
for each shop independently, instead of using one date for every shop
in the data. Or another example, if we have search queries from
multiple users, is using several search engines, we can split the data
by a combination of user ID and search engine ID. Examples of
competitions with combined splits include the Western Australia Rental
Prices competition by Deloitte and their qualification phase of data
science game 2017. In the first competition, train/test was split by a
single date, but the public/private split was made by different dates for
different geographic areas.

In the second competition, participants had to predict whether a user
of online music service will listen to the song. The train/test split was
made in the following way. For each user, the last song he listened to
was placed in the test set, while all other songs were placed in the
train set. These were the main splitting strategies employed in the
competitions.

Again, the main idea I want you to take away from this lesson is
that your validation should always mimic train/test split made by
organizers. It could be something non-trivial. For example, in the
Home Depot Product Search Relevance competition, participants were
asked to estimate search relevancy. In general, data consisted of
search terms and search results for those terms, but test set contained
completely new search terms. So, we couldn't use either a random
split or a search term-based split for validation. First split favored
more complicated models, which led to overfitting while second split,
conversely, to under-fitting. So, in order to select optimal models, it
was crucial to mimic the ratio of new search terms from train/test
split.

Page � of �7 30

We just demonstrated major data splitting strategies employed in
competitions. Random split, time-based split, ID-based split, and their
combinations. This will help us build reliable validation, make a useful
decisions about feature generation, and in the end, select models
which will perform best on the test data. As the main point of this
video, remember the general rule of making a reliable validation. Set
up your validation to mimic the train/test split of the competition.

Problems Occurring During Validation
• Validation Stage
• Submission Stage

In the previous videos we discussed the concept of validation and
overfitting, and discussed how to chose validation strategy based on
the properties of data we have. And finally we learned to identify data
split made by organizers. After all this work being done, we honestly
expect that the relation will, in a way, substitute a leaderboard for us.
That is the score we see on the validation will be the same for the
private leaderboard. Or at least, if we improve our model on validation,
there will be improvements on the private leaderboard. And this is
usually true, but sometimes we encounter some problems here. In
most cases these problems can be divided into two groups. In the first
group are there problems we encounter during local validation. Usually
they are caused by inconsistency of the data, a widespread example is
getting different optimal parameters for different folds. In this case we

Page � of �8 30

need to make more thorough validation. The problems from the
second group, often reveal themselves only when we send our
submissions to the platform. And observe that scores on the validation
and on the leaderboard don't match. In this case, the problem usually
occurs because we can't mimic the exact train test split on our
validation. These are tough problems, and we definitely want to be
able to handle them. So before we start, let me provide an overview of
this video. For both validation and submission stages we will discuss
main problems, their causes, how to handle them.

validation stage problems
Usually, they attract our attention during validation. Generally, the
main problem is a significant difference in scores and optimal
parameters for different train validation splits.

Let’s start with an example. Consider that we need to predict sales in a
shop in February. Say we have target values for the last year, and,
usually, we will take last month in the validation. This means January,
but clearly January has much more holidays than February. And people
tend to buy more, which causes target values to be higher overall. And
that mean squared error of our predictions for January will be greater
than for February. Does this mean that the module will perform worse
for February? Probably not, at least not in terms of overfitting. As we
can see, sometimes this kind of model behavior can be expected. But
what if there is no clear reason why scores differ for different folds?
Lets identify several common reasons for this and see what we can do
about it.

Too little data
The first hypotheses we should consider is that we have too little data.
For example, consider a case when we have a lot of patterns and
trends in the data. But we do not have enough samples to generalize
these patterns well.
In that case, a model will utilize only some general patterns. And for
each train/validation split, these patterns will partially differ. This
indeed, will lead to a difference in scores of the model. Furthermore,
validation samples will be different each time only increasing the
dispersion of scores for different folds.

Page � of �9 30

Too Diverse and inconsistent data
For example, if you have very similar samples with different target
values, a model can be confused by them.

Consider two cases:
• First, if one of such samples is in the train while another is in the

validation. We can get a pretty high error for the second sample.

• The second case, if both samples are in validation, we will get
smaller errors for them.

• Or let's remember another example of diverse data we have already
discussed a bit earlier. The example of predicting sales for January
and February. Here we have the nature or the reason for the
differences in scores.

As a quick note, notice that in this example, we can reduce this
diversity a bit if we will validate on the February from the previous
year. So the main reasons for a difference in scores and optimal model
parameters for different folds are, first, having too little data,
and second, having too diverse and inconsistent data.

What can we do?
If we are facing this kind of problem, it can be useful to make more
thorough validation.
1. You can increase K in KFold, but usually 5 folds are enough.
2. Make KFold validation several times with different random splits

(seeds). And average scores to get a more stable estimate of
model's quality.

Page � of �10 30

The same way we can choose the
best parameters for the model if
there is a chance to overfit. It is
useful to use one set of KFold
spl its to select parameters
and another set of KFold splits to
check model's quality.

Examples of competitions which required extensive validation include
the Liberty Mutual Group Property Inspection Prediction competition
and the Santander Customer Satisfaction competition. In both of
them, scores of the competitors were very close to each other. And
thus participants tried to squeeze more from the data. But do not
overfit, so the thorough validation was crucial.

Submission stage problems

• LB score is consistently higher/lower than validation score.
• LB score is not correlated to the validation score at all.

Sometimes you can diagnose these problems in the process of doing
careful. But still, often you encounter these type of problems only
when you submit your solution to the platform. But then again, EDA is
your friend when it comes down to finding the root of the problem.
Generally speaking, there are two cases of these issues. In the first
case, leaderboard score is consistently higher or lower than validation
score. In the second, leaderboard score is not correlated with
validation score at all.
So in the worst case, we can improve our score on the validation.
While, on the contrary, score on the leaderboard will decrease. As you
can imagine, these problems can be much more trouble. Now
remember that the main rule of making a reliable validation, is to
mimic a train/test split made by organizers. I won't lie to you, it can
be quite hard to identify and mimic the exact train/test here. Because
of that, I highly recommend you to start submitting your solutions
right after you enter the competition.
It's good to start exploring other possible roots of this problem. Let's
first sort out causes we could observe during validation stage.

Page � of �11 30

• We may already have quite different scores in KFold.
 Here it is useful to see a leaderboard as another validation fold. Then,
if we already have different scores in KFold, getting a not very similar
result on the leaderboard is not surprising. More we can calculate
mean and standard deviation of the validation scores and estimate if
the leaderboard score is expected. But if this is not the case, then
something is definitely wrong.
There could be two more reasons for this problem.

- We already have different scores in KFold
- The first reason: Too little data in public leaderboard, which is pretty

self explanatory. Just trust your validation, and everything will be
fine.

- The second train and test data are from different distributions.

Now, because our course is a practical one, let's take a moment
and think what you can do if you encounter these in a competition.

Let me explain what I mean when I talk
about different distributions. Consider a
regression task of predicting people's
height by their photos on Instagram.
The blue line represents the distribution
of heights for man, while the red line
represents the distribution of heights for
women. As you can see, these
distributions are different. Now let's
consider that the train data consists
only of women, while the test data
consists only of men. Then all model
predictions will be around the average
height for women. And the distribution of these predictions will be very
similar to that for the train data. No wonder that our model will have a
terrible score on the test data. Now, because our course is a practical
one, let's take a moment and think what you can do if you encounter
this in a competition.

Let's start with a general approach to such problems. At the broadest
level, we need to find a way to tackle different distributions in train

Page � of �12 30

and test. Sometimes, these kind of problems could be solved by
adjusting your solution during the training procedure. But sometimes,
this problem can be solved only by adjusting your solution through the
leaderboard. That is through leaderboard probing. The simplest way to
solve this particular situation in a competition is to try to figure out the
optimal constant prediction for train and test data. And shift your
predictions by the difference. Right here we can calculate the average
height of women from the train data.

Calculating the average height of men is a bit trickier. If the
competition's metric is means squared error, we can send two constant
submissions, write down the simple formula. And find out that the
average target value for the test is equal to 70 inches. In general, this
technique is known as leaderboard probing. And we will discuss it in
the topic about leaks. So now we know the difference between the
average target values for the train and the test data, which is equal to
7 inches. And as the third step of adjusting our submission to the
leaderboard we could just try to add 7 to all predictions. But from this
point it is not validational it is a leaderboard probing and list. Yes, we
probably could discover this during exploratory data analysis and try to
make a correction in our validation scheme. But sometimes it is not
possible without leaderboard probing, just like in this example. A
competition which has something similar is the Quora question pairs
competition. There, distributions of the target from train and test were
different. So one could get a good improvement of a score adjusting
his predictions to the leaderboard.

But fortunately, this case is rare enough. More often, we encounter
situations which are more like the
following case. Consider that now
train consists not only of women,
but mostly of women, and test,
consists not only of men, but mostly
of men.

The main strategy to deal with these
kind of situations is simple. Again,
remember to mimic the train test
split. If the test consists mostly of
Men, force the validation to have the

Page � of �13 30

same distribution. In that case, you ensure that your validation will be
fair.

This is true for getting both scores and optimal parameters correctly.
For example, we could have quite different scores and optimal
parameters for women's and men's parts of the data set.

Ensuring the same distribution in test and validation helps us get
scores and parameters relevant to test. I want to mention two
examples of this here. First the Data Science Game Qualification
Phase: Music recommendation challenge. And second, competition
with CTR prediction which we discussed earlier in the data topic. Let's
start with the second one, do you remember the problem? we have a
task of predicting CTR. So, the train data, which basically was the
history of displayed ads obviously didn't contain ads which were not
shown. On the contrary, the test data consisted of every possible ad.
Notice this is the exact case of different distributions in train and test.
And again, we need to set up our validation to mimic test here. So we
have this huge bias towards showing ads in the train and to set up a
correct validation. We had to complete the validation set with rows of
not shown ads.

Now, let's go back to the first example. In that competition,
participants had to predict whether a user will listen to a song
recommended by the system. So, the test contained only
recommended songs. But train, on the contrary, contained both
recommended songs and songs users selected themselves. So again,
one could adjust his validation by 50 renowned songs selected by
users. And again, if we will not account for that fact, then improving
our model on actually selected songs can result in the validation score
going up. But it doesn't have to result and the same improvements for
the leaderboard.

Okay let's conclude this overview of handling validation problems
for the submission stage. If you have too little data in public
leaderboard, just trust your validation. If that's not the case, make
sure that you did not overfit. Then check if you made correct train/test
split, as we discussed in the previous video. And finally, check if you
have different distributions in train and test.

Page � of �14 30

Great, let's move on to the next point of this video. For now, I hope
you did everything all right:

• First, you did extensive validation.
• Second, you choose a correct splitting strategy for train/validation

split.
• Finally, you ensured the same distributions in validation and test.

But sometimes you have to expect leaderboard shuffle anyway, and
not just for you, but for everyone. First, for those who never heard of
it, a leaderboard shuffle happens when participants position some
public and private leaderboard drastically differ. Take a look at this
screenshot from the two sigma financial model in challenge
competition. The green and the red arrows mean how far a team
moved. For example, the participant who finished the 3rd on the
private leaderboard was the 392nd on the public leaderboard. Let's
discuss three main reasons for that shuffle, randomness, too little
data, and different public, private distributions. So first, randomness,
this is the case when all participants have very similar scores. This can
be either a very good score or a very poor one. But the main point
here is that the main reason for differences in scores is randomness.
To understand this a bit more, let's go through two quick examples
here. The first one is the Liberty Mutual Group, Property Inspection
Prediction competition. In that competition, scores of competitors were
very close. And though randomness didn't play a major role in that
competition, still many people overfit on the public leaderboard. The
second example, which is opposite to the first is the TWO SIGMA
Financial Model and Challenge competition. Because the financial data
in that competition was highly unpredictable, randomness played a
major role in it. So one could say that the leaderboard shuffle there
was among the biggest
shuff les on Kaggle
platform.

Page � of �15 30

Okay, that was randomness, the second reason to expect leaderboard
shuffle is too little data overall, and in private test set especially. An
example of this is the Restaurant Revenue Prediction Competition. In
that competition, training set consisted of less than 200 rows. And this
set consisted of less than 400 rows. So as you can see shuffle here
was more than expected.

Last reason of leaderboard shuffle could be different distributions
between public and private test sets. This is usually the case with time
series prediction, like the Rossmann Stores Sales competition. When
we have a time-based split, we usually have first few weeks in public
leaderboard, and next few weeks in private leaderboard. As people
tend to adjust their submission to public leaderboard and overfit, we
can expect worse results on private leaderboard. Here again, trust
your validation and everything will be fine. Okay, that is all with
reasons for leaderboard shuffling.

Conclusion
Now let's conclude both this video and the entire validation topic. Let's
start with the video.
• First, if you have big dispersion of scores on validation stage we

should do extensive validation. That means
 - every score from different KFold splits, and
 - tune model on one split while evaluating score on the other.

• Second, if submission do not match local validation score, we should.
- first, check if we have too little data in public leaderboard.
- Second, check if we did not overfit,
- check if you chose correct splitting strategy.
- And finally, check if trained test have different distributions.

You can expect leaderboard shuffle because of three key things,
randomness, little amount of data, and different public/private test
distributions. So that's it, in this topic we defined validation and its
connection to overfitting. Described common validation strategies.
Demonstrated major data splitting strategies. And finally analyzed and
learned how to tackle main validation problems. Remember this, and it
will absolutely help you out in competitions. Make sure you understand
the main idea of validation well. That is, you need to mimic the train/
test split.

Page � of �16 30

Practice Quiz
1- Suppose we are given a huge dataset. We did a KFold validation once and
noticed that scores on each fold are roughly the same. Which validation type
is most practical to use?
A. We can use a simple hold out validation scheme bc the data is

homogenous.
B. We should keep on using Kfold scheme as data is homogenous and Kfold

is the most computationally efficient scheme.
C. LOO bc the data is not homogenous.

2- Suppose we are given a medium-sized dataset and we did a KFold
validation once. We noticed that scores on each fold differ noticeably. Which
validation type is the most practical to use?
A. Hold out
B. LOO
C. Kfold

3- The features we generate depend on the train-test data splitting method.
Is this true?
A. False
B. True

4- What of these can indicate an expected leaderboard shuffle in a
competition?
A. Most of the competitions have similar scores.
B. Little amount of training and/or testing data.
C. Different public/private data or target distributions.

Quiz
1- Select true statements
A. Underfitting refers to not capturing enough patterns in the data
B. We use validation to estimate the quality of our model
C. The model, that performs best on the validation set is guaranteed

to be the best on the test set.
D. Performance increase on a fixed cross-validation split guaranties

performance increase on any cross-validation split.
E. The logic behind validation split should mimic the logic behind train-

test split.

Page � of �17 30

2- Usually on Kaggle it is allowed to select two final submissions,
which will be checked against the private LB and contribute to the
competitor's final position. A common practice is to select one
submission with a best validation score, and another submission which
scored best on Public LB. What is the logic behind this choice?

A. Generally, this approach is based on the assumption that people
rarely tend to overfit to the Public LB. Almost always you have a lot
of data in the test set and it is quite hard to overfit. Indeed, this
render validation useless.

B. Generally, this approach is based on the assumption that the test
data may have a different target distribution compared to the train
data. If that would be the true, the submission which was chosen
based on Public LB, will perform better. If, otherwise, the above
distributions will be similar, the submission which was chosen based
on validation scores, will perform better.

C. Generally, this approach is based on the assumption that validation
is rarely valid in competitions. Often it is hard to trust your
validation and thus you should account for both cases if the
validation will succeed and if the validation will fail.

3- Suppose we have a competition where we are given a dataset of
marketing campaigns. Each campaign runs for a few weeks and for
each day in campaign we have a target - number of new customers
involved. Thus the row in a dataset looks like
Campaign_id, Date, {some features}, Number_of_new_customers

Test set consists of multiple campaigns. For each of them we are given
several first days in train data. For example, if a campaign runs for two
weeks, we could have three first days in train set, and all next days
will be present in the test set. For another campaign, running for
weeks, we could have the first 6 days in the train set, and the
remaining days in the test set.

Identify train/test split in a competition.

A. Id-based split
B. Combined split
C. Random
D. Time based

Page � of �18 30

4- Which of the following problems you usually can identify without the
Leaderboard?

A. Train and test target distribution are from different distributions
B. Public leaderboard score will be unreliable because of too little data
C. Different scores/optimal parameters between folds
D. Train and test data are from different distributions

	 •	 Validation in Sklearn

	 •	 Advices on validation in a competition

Data Leakage
Basic Data Leaks
In this section, we will talk about a very sensitive topic data leakage or
more simply. We'll define leakage in a very general sense as an
unexpected information in the data that allows us to make
unrealistically good predictions. For the time being, you may have
think of it as of directly or indirectly adding ground truths into the test
data. Data leaks are very, very bad. They are completely unusable in
real world. They usually provide way too much signal and thus make
competitions lose its main point, and quickly turn them into a leak
hunt race.
Further in this section, I will show you the main types of data
leaks that could appear during solving a machine learning problem.

• Leakage types and examples
• Competition specific. Leaderboard Probing
• Concrete Walkthrough

Also focus on a competition specific leak exploitation technique
leaderboard probing. Finally, you will find special videos dedicated to
the most interesting and non-trivial data leaks. I will start with the
most typical data leaks that may occur in almost every problem.

Time series is our first target. Typically, future picking. It is common
sense not to pick into the future like, can we use stock market's price

Page � of �19 30

http://scikit-learn.org/stable/modules/cross_validation.html
http://www.chioka.in/how-to-select-your-final-models-in-a-kaggle-competitio/

from day after tomorrow to
predict price for tomorrow? Of
course not.

However, direct usage of future
information in incorrect time
splits still exist. When you enter
a time serious competition at
first, check train, public, and
private splits. If even one of
them is not on time, then you
found a data leak. In such case, unrealistic features like prices next
week will be the most important. But even when split by time, data
still contains information about future. We still can access the rows
from the test set. We can have future user history in CTR task, some
fundamental indicators in stock market predictions tasks, and so
on. There are only two ways to eliminate the possibility of data
leakage. It's called competitions, where one can not access rows from
future or a test set with no features at all, only IDs.

For example, just day number and instrument ID in stock market
prediction, so participants create features based on past and join them
themselves.

Now, let's discuss something more unusual. Those types of data leaks
are much harder to find. We often have more than just train and test
files. For example, a lot of images or text in archive. In such case, we
can access some meta information, file creation date, image resolution
etcetera. It turns out that this meta information may be connected to
target variable. Imagine classic cats versus dogs classification. What if
cat pictures were taken before dog? Or taken with a different
camera? Because of that, a good practice from organizers is to erase
the meta data, resize the pictures, and change creation
date. Unfortunately, sometimes we will forget about it. A good
example is Truly Native competition, where one could get nearly
perfect scores using just the dates from zip archives.

Another type of leakage could be found in IDs. IDs are unique identifiers of
every row usually used for convenience. It makes no sense to include them
into the model. It is assumed that they are automatically generated. In

Page � of �20 30

reality, that's not always true. ID
may be a hash of something,
p r o b a b l y n o t i n t e n d e d f o r
disclosure. It may contain traces of
information connected to target
variable. It was a case in Caterpillar
competition.

A link ID as a feature slightly
improve the result. So I advise
you to pay close attention to IDs
and always check whether they are useful or not. Next is row order. In
trivial case, data may be shuffled by target variable. Sometimes simply
adding row number or relative number, suddenly improves this
course. Like, in Telstra Network Disruptions competition. It's also
possible to find something way more interesting like in TalkingData
Mobile User Demographics competition. There was some kind of row
duplication, rows next to each other usually have the same label. This
is it with a regular type of leaks. To sum things up, in this video, we
embrace the concept of data leak and cover data leaks from future
picking, meta data, IDs, and row order.

Leaderboard probing and examples of rare data leaks

Now, I will tell you about a competition-specific technique tightly
connected with data leaks. It's leaderboard probing. There are actually
two types of leaderboard probing. The first one is simply extracting all
ground truth from public part
of the leaderboard. It's usually
pretty harmless, only a little
more of straining data. It is also
a relatively easy to do and I
have a submission change on
the small set of rows so that you
can unambiguously calculate
ground truth for those rows from
leaderboard score.

I suggest checking out the link to Alek Trott's post in additional
materials. He thoroughly explains how to do it very efficiently with
minimum amount of submissions. Perfect score script by Oleg Trott

Page � of �21 30

https://www.kaggle.com/olegtrott/the-perfect-score-script

Our main focus will be on another type of leaderboard
probing. Remember the purpose of public, private
split. It's supposed to protect private part of test set from
information extraction. It turns out that it's still
vulnerable. Sometimes, it's possible to submit predictions
in such a way that will give out information about private
data. It's all about consistent categories. Imagine, a
chunk of data with the same target for every row. Like in
the example, rows with the same IDs have the same
target. Organizers split it into public and private parts.

But we still know that that particular chunk has the same label for
every role. After setting all the predictions close to 0 in our submission
for that particular chunk of data, we can expect two outcomes. The
first one is when score improved, it means that ground truth in public
is 0. And it also means
that ground truth in private is 0 as well. Remember, our chunk has the
same labels.

The second outcome is when the score became worse. Similarly, it
means that ground truth in both public and private is 1. Some
competitions indeed have that kind of categories. Categories that with
high certainty have the same label.
You could have encountered those type of categories in Red Hat
and West Nile competitions. It was a key for winning. With a lot of
submissions, one can explore a good part of private test set.

It's probably the most annoying type of data leak. It's mostly technical
and even if it's released close to the competition deadline, you simply
won't have enough submissions to fully exploit it.

Furthermore, this is on the tip of the iceberg. When I say consistent
category, I do not necessarily mean that this category has the same
target. It could be consistent in different ways. The definition is quite
broad. For example, target label could simply have the same
distribution for public and private parts of data. It was the case in
Quora Question Pairs competition. In that competition there was a
binary classification task being evaluated by log loss metric. What's
important target variable had different distributions in train and test,
but allegedly the same and private and public parts of these data. And

Page � of �22 30

because of that, we could benefit a lot via leaderboard
probing. Treating the whole test set as a consistent category.

Take a look at the formula on the
slide. This logarithmic loss for
submission with constant predictions
C big. Where N big is the real number
of rows, N1 big is the number of rows
with target one. And L big is the
leader board score given by that
constant predict ion. From this
equation, we can calculate N1 divided
by N or in other words, the true ratio
of ones in the test set . That
knowledge was very beneficial. We
could use it rebalance training data
points to have the same distribution of target variable as in the test
set. This little trick gave a huge boost in leaderboard score. As you can
see, leaderboard probing is a very serious problem that could occur
under a lot of different circumstances. I hope that someday it will
become complete the eradicated from competitive machine learning.

Now, finally, I like to briefly walk through the most peculiar
and interesting competitions with data leakage.

And first, let's take a look at Truly Native competition from different
point of view. In this competition,
participants were asked to predict
whether the content in an HTML file
is sponsored or not. As was already
discussed in previous video, there
was a data leak in archive dates. We
can assume that sponsored and non-
sponsored HTML files were gotten
during different periods of time.
So do we really get rid of data leak
after erasing archive dates?

The answer is no. Texts in HTML files may be connected to dates in a
lot of ways. From explicit timestamps to much more subtle things, like

Page � of �23 30

news contents. As you’ve probably already realized, the real problem
was not metadata leak, but rather data collection. Even without meta
information, machine learning algorithms will focus on actually useless
features. The features that only act as proxies for the date.

The next example is Expedia Hotel Recommendations, and that
competit ions, participants worked with logs of customer
behavior. These include what customers searched for, how they
interacted with search results, and clicks or books, and whether or not
the search result was a travel package.

Exped i a was i n t e res ted i n
predicting which hotel group a
user is going to book. Within the
logs of customer behavior, there
was a very tricky feature. A
distance from users seeking (city
to?) their hotel. Turned out, that
this feature is actually a huge
data leak. Using this distance, it
was possible to reverse engineer two coordinates, and simply map
ground truth from train set to the test set.

I strongly suggest you to check out
the special video dedicated to this
competition. I hope that you will
find it very useful because the
app roaches and me thods o f
exploiting data leak were extremely
nontrivial. And you will find a lot of
interesting tricks in it.

The next example is from Flavors of
Physics competition. It was a pretty
complicated problem dealing with
physics at Large Hadron Collider. The special thing about that competition
was that signal was artificially simulated. Organizers wanted a machine
learning solution for something that has never been observed. That's why
the signal was simulated.

Page � of �24 30

But simulation cannot be perfect and it's possible to reverse engineer
it. Organizers even created special statistical tests in order to punish the
models that exploit simulation flaws. However, it was in vain. One could
bypass the tests, fully exploit simulation flaws, and get a perfect score on
the leaderboard.

The last example is going to cover pairwise tasks. Where one needs to
predict whether the given pair of items
are duplicates or not, like in Quora
question pairs competition.

There is one thing common to all the
c o m p e t i t i o n s w i t h p a i r w i s e
tasks. Participants are not asked to
evaluate all possible pairs. There is
always some nonrandom subsampling,
and this subsampling is the cause of
data leakage. Usually, organizers sample
most ly hard-to-dist inguish pairs.
Because of that, of course, imbalance in item frequencies. It results in more
frequent items having the higher possibility of being duplicates. But that's
not all. We can create a connectivity matrix N times N, where N is the total
number of items. If item i and item j appeared in a pair then we place 1 in
(i,j) and (j,i) positions. Now, we can treat the rows in connectivity matrix as
vector representations for every item. This means that we can compute
similarities between those vectors. This tricks works for a very simple
reason.

When two items have similar sets of neighbors they have a high possibility of
being duplicates.

• Page about data leakages on Kaggle

Expedia Challenge

In that competition, we worked with lots of customer behavior. These include
what customers searched for, how they interacted with search results, clicks
or books, and whether or not the search result was a travel package, and
Expedia was interested in predicting which hotel group a user is going to
book. Important thing here is prediction target the hotel group. In other
words, characteristics of actual hotel, remember it. As it turned out, this
competition had a very non-trivial and extremely hard to exploit data

Page � of �25 30

https://www.kaggle.com/wiki/Leakage

leak. From the first glance, data leak was pretty straightforward. We had a
destination distance among the feature. It's a distance from user city to an
actual hotel he clicked on booked. And, as I said earlier, our prediction target
is a characteristic of an actual hotel. Furthermore, destination distance
was very precise so unique user city and destination distance
pairs corresponded to unique hotels. Putting two and two together, we can
treat user city and destination distance pair as a proxy to our target.

When in this set, we encountered such pair already present in train
set, we could simply take a label from there as our prediction. It
worked nearly perfect for the pairs present in both train and
test. However, nearly half of test set consisted from new pairs without
a match from train set. This way we had to go deeper. But, how
exactly can we improve our solution? Well, there are two different
ways. First, one is to create count features on corteges similar to user
city and destination distance pair. For example, like how many hotels
of which group there are for user city, hotel country, hotel city
triplet. Then, we could train some machine learning model on such
features. Another way is to somehow
find more matches. For that purpose,
we need to find true coordinates of
users cities and hotel cities. From that,
to guess it was destination distance
feature, it was possible to find good
approximation for the coordinates of
actual hotels. Let's find out how to do
it. First of all, we need to understand
how to calculate the distance. Here,
we work with geographical coordinates
so the distances are geodesic. It's done
via Haversine formula, not a pleasant one.

Page � of �26 30

Now, suppose that we know true coordinates of three points and
distances from fourth point with unknown coordinates to each of
them, if you write down a system of three equations, one for each
distance, we can unambiguously solve it and get true coordinates for
the fourth point. Now, we have four points with known coordinates. I
think you get the idea. So, at first, by hook or by crook, we reverse
engineer true coordinate of three big cities. After that, we can
iteratively find coordinates of more and more cities. But as you can see
from the picture, some cities ended up in oceans. It means that our
algorithm is not very precise. A rounding error accumulates after every
iteration and everything starts to fall apart. We get some different
method and indeed we can do better. Just compare this picture with
the previous one. It's obviously much more accurate. Remember how
in iterative method we solved a system of three equations to
unambiguously find coordinates or fourth unknown point. But why limit
ourselves with three equations? Let's create a giant system of
equations from all known distances with true coordinates being the
known variables. We end
u p w i t h l i t e r a l l y
hundreds or thousands
of equations and tens of
thousands of unknown
variables. Good thing it's
very sparse. We can
apply special methods
from SciPy to efficiently
solve such a system. In
the end, after solving
t h a t s y s t e m o f
equations, we end up with a very precise coordinates for both hotel
cities and user cities. But as you remember, we're predicting a type of
a hotel. Using city coordinates and destination distance, it's possible to
find an approximation of true coordinates of an actual hotel. When we
fix user city and draw a circumference around it with the radius of
destination distance, it's obvious that true hotel location must be
somewhere on that circumference. Now, let's fix some hotel city and
draw such circumferences from all users cities to that fixed hotel cities
and draw them for every given destination distance. After doing so, we
end up with pictures like the ones on the slide. A city contains a
limited number of hotels so the intuition here is that hotels actually are

Page � of �27 30

on the intersection points and the more circumferences intersect in
such point, the higher the probability of a hotel being in that point. As
you can see, the pictures are beautiful but pretty messy.

It's impossible to operate in
t e rms o f s i ngu l a r po i n t s .
However, there are explicit
clusters of points and this
information can be of use. We
can do some kind of integration.
For every city, let's create a grid
around its center.

Something like 10 kilometers
times 10 kilometers with step size of 100 meters. Now, using training
data, for every cell in the grid, we can count how many hotels of which
type are present there. If a circumference goes through a cell, we give
plus one to the hotel type corresponding to that circumference. During
inference, we also draw a circumference based on destination distance
feature. We see from what degree its cells it went through and use
information from those cells to create features like a sum of all
counters, average of all counters, maximum of all counters and so
on. Great. We have covered the part of feature engineering. Note that
all the features directly used target label. We cannot use them as is in
training. We should generate them in out-of-fold fashion for train
data. So we had training data for years 2013 and 2014. To generate
features for year 2014, we used labelled data from year 2013 and vice
versa, used the year 2014 to generate features for the year 2013. For
the test features, which was from year 2015, we naturally used all
training data. In the end, we calculated a lot of features and shoved
them into XGBoost model. After 16 hours of training for the course, we
got our results. We ended up on third position on public leader-boards
and forth on private. We did good, but we still did not fully exploit data
leakage. If you check the leaderboard, you'll notice the difference in
scores between first place and the rest. Under speculation, the winner
did extraordinary. Although, in general, his methods were very similar
to ours. He was able to extract way more signal. Finally, I hope you
enjoyed my story. As you can see, sometimes working with data
leakage could be very interesting and challenging. You may develop
some unusual skills and broaden your horizons.

Page � of �28 30

Quiz

1. Suppose that you have a credit scoring task, where you have to
create a ML model that approximates expert evaluation of an
individual's creditworthiness. Which of the following can potentially
be a data leakage? Select all that apply.

A. First half of the data points in the train set has a score of 0, while
the second half has scores > 0

B. An ID of a data point (row) in the train set correlates with target
variable.

C. Among the features you have a company_id, an identifier of a
company where this person works. It turns out that this feature is
very important and adding it to the model significantly improves
your score.

2. What is the most foolproof way to set up a time series competition?

A. Split train, public and private parts of data by time. Remove all
features except IDs (e.g. timestamp) from test set so that
participants will generate all the features based on past and join
them themselves.

B. Split train, public and private parts of data by time. Remove time
variable from test set, keep the features.

C. Make a time based split for train/test and a random split for public/
private.

3. Suppose that you have a binary classification task being evaluated
by logloss metric. You know that there are 10000 rows in public
chunk of test set and that constant 0.3 prediction gives the public
score of 1.01. Mean of target variable in train is 0.44. What is the
mean of target variable in public part of test data (up to 4 decimal
places)?

Page � of �29 30

4. Suppose that you are solving image classification task. What is the
label of this picture?

Page � of �30 30

