
Week 3 - Metric Optimization 
The metrics that are used to evaluate a solution.  

In the course, we focus on regression and classification. So we only 
discuss metric for these tasks.  

For better understanding, we will also build a simple baseline for each 
metric. Baseline: is what is the best constant to predict for that 
particular method.  

In the competitions, the metric is 
fixed for us and the models and 
competitors are ranked using it. 
In order to get higher leader 
board score you need to get a 
better metric score.  
I want to stress out that it is 
really important to optimize 
exactly the metric we're given in 
the competition and not any 
other metric. (Look at the figure 
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to the right. We have two metrics to optimize, M1 and M2. Two 
different models for two different metrics.) 

Now, the biggest problem is that some metrics cannot be optimized 
efficiently. That is there is no simple way to find, say, the optimal 
hyperplane. That is why sometimes we need to train our model to 
optimize something different from competition’s metric. And in this 
case we will need to apply various heuristics to improve competition 
metric score.  

And there's another case where we need to be smart about the 
metrics. It is one that train and the test sets are different.  

In the lesson about leaks, we have discussed leader board probing. 
That is, we can check, for example, if the mean target value on public 
part of test set is the same as on train. If it's not, we would need to 
adapt our predictions to suit that set better. This is basically a specific 
metric optimization technique we apply, because train and test are 
different. Or there can be more severe cases where improved metric 
on the validation set could possibly not result into improved metric on 
the test set. In these situations, it's a good idea to stop and think 
maybe there is a different way to approach the problem.  

In particular, time series can be very challenging to forecast. Even if 
you did a validation just right. (plead?) by time, rolling windows, fill 
the distribution in the future can be much different from what we had 
in the train set.  

Or sometimes, there's just not enough training data, so a model 
cannot capture the patterns.  
In one of the compositions I took part, I had to use some tricks to 
boost my score after the modeling. And the trick was a consequence of 
a particular metric used in that competition. The metric was quite 
unusual actually, but it is intuitive. If the trend is guessed correctly, 
then the absolute difference between the prediction and the target is 
considered as an error.  
If for instance, model predict nth value in the prediction horizon to 
be higher than the last value from the train side but in reality it is 
lower, then the trend is predicted incorrectly, and the error was set to 
difference squared.  
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So if we predict a value to be above the dashed line, but it turns out to 
be below or vice versa, the trend thought(?) to be predicted 
incorrectly.  

So this metric cares a lot more about correct trend to be predicted 
than about actual value you predict. And that is something it was 
possible to exploit.  
There were several time series to forecast, the horizon to predict was 
long, and the model's predictions were unreliable.  

Moreover, it was not possible to optimize exactly this metric. So I 
realized that it would be much better to set all the predictions to either 
last value plus a very tiny constant, or last value minus very tiny 
constant. The same value for all the points in the time interval, we are 
to predict for each time series. And the sign depends on the 
estimation. What is more likely the values in the horizon to be 
lower than the last known value, or to be higher?  

This trick actually took me to the first place in that competition. So 
finding a nice way to optimize a metric can give you an advantage over 
other participants, especially if the metric is peculiar.  
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So maybe I should formulate it like that. We should not forget to do 
kind of exploratory metric analysis along with exploratory data 
analysis. At least when the metric is an unusual one.  
So in this video we've understood that each business has its own way 
to measure ineffectiveness of an algorithm based on its needs, and 
therefore, there are so many different metrics.  
And we saw two motivational examples. Why should we care about the 
metrics? Well, basically because it is how competitors are compared to 
each other.  

In the following videos we'll talk about concrete metrics. We'll first 
discuss high level intuition for each metric and then talk about 
optimization techniques.  

Regression Metrics Review I 
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In this video, we will review the most common ranking metrics and 
establish an intuition about them. Although in a competition, the 
metric is fixed for us, it is still useful to understand in what cases one 
metric could be preferred to another. In this course, we concentrate on 
regression and classification, so we will only discuss related metrics.  

For a better understanding, for each metric, we will also build the most 
simple baseline we could imagine, the constant model. That is, if we 
are only allowed to predict the same value for every object, what value 
is optimal to predict according to the chosen metric?  

Let's start with regression task and related metrics. In the following 
videos, we'll talk about metrics for classification.  

The first metric we will discuss is Mean Square Error:  

 MSE =
1
N

N

∑
i=1

(y − ̂yi)2
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Say, we have five objects, and each object has some features, X, and 
the target is shown in the column Y. Let's ask ourselves a question. 
How will the error change if we fix all the predictions but one to be 
perfect, and we'll vary the value of the remaining one? To answer this 
question, take a look at this plot.  

On the horizontal line, we will 
first put points to the positions of 
the target values. The points are 
c o l o r e d a c c o r d i n g t o t h e 
corresponding rows in our data 
table. And on the Y-axis, we will 
show the mean square error. So, 
let 's now assume that our 
predictions for the first four 
objects are perfect, and let's draw 
a curve. How the metric value will change if we change the prediction 
for the last object? For MSE metric, it looks like that. In fact, if we 
predict 27, the error is zero, and if we predict something else, then it 
is greater than zero. And the error curve looks like parabola.  

Let's now draw analogous curves 
for other objects.  
Well, right now it's hard to make 
any conclusions but we will build 
the same kind of plot for every 
metric and we will note the 
difference between them. Now, 
let’s build the simplest baseline 
model. We'll not use the features 
X at all and we will always 
predict a constant value Alpha.  

But, what is the optimal constant? What constant minimizes the mean 
square error for our data set? In fact, it is easier to set the derivative 
of our total error with respect to that constant to zero, and find it from 
this equation. What we'll find is that the best constant is the mean 
value of the target column.  
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If you think you don't know how to derive it, take a look at the reading 
materials. There is a fine explanation and links to related books. But 
let us constructively check it. Once again, on the horizontal axis, let's 
denote our target values with dot and draw a function. How the error 
changes is if we change the value of that constant Alpha? We can do it 
with a simple grid search over a given range by changing Alpha 
intuitively and recomputing an error. Now, the green square shows a 
minimum value for our metric.  

The constant we found is 10.99, and it's quite close to the true mean 
of the target which is 11. Also note that the red curve on the second 
plot is uniformly same and average of the curves from the first plot. 
We finished discussing MSE metric itself, but there are two more 
related metrics used frequently, RMSE and R_squared.  

 

RMSE, Root Mean Square Error, is a very similar metric to MSE. The 
square root is introduced to make scale of the errors to be the same as 
the scale of the targets. Now, it is very important to understand in 
what sense RMSE is similar to MSE, and what is the difference. First, 
they are similar in terms of their minimizers.  

But there is a little bit of difference between the two for gradient-
based models. Take a look at the gradient of RMSE with respect to i-th 
prediction.  

 

It is basically equal to gradient of MSE multiplied by some value. The 
value doesn't depend on the index i. It means that traveling along MSE 
gradient is equivalent to traveling along RMSE gradient but with a 
different learning rate and the learning rate depends on MSE score 
itself. So, it is kind of dynamic. So even though RMSE and MSE are 
really similar in terms of models scoring, they can be not immediately 
interchangeable for gradient based methods.  

RMSE = MSE

∂RMSE
∂ ̂yi

=
1

2 MSE

∂MSE
∂ ̂yi
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We will probably need to adjust some parameters like the learning 
rate. Now, what if I told you that MSE for my models predictions is 32? 
Should I improve my model or is it good enough? Or what if my MSE 
was 0.4?  

Actually, it's hard to realize if our model is good or not by looking at 
the absolute values of MSE or RMSE. It really depends on the 
properties of the dataset and their target vector. How much variation is 
there in the target vector. We would probably want to measure how 
much our model is better than the constant baseline. And say, the 
desired metrics should give us zero if we are no better than the 
baseline and one if the predictions are perfect. For that purpose, 
R_squared metric is usually used.  

 

where,  

 

When MSE of our predictions is zero, the R_squared is 1, and when our 
MSE is equal to MSE over constant model, then R_squared is 
zero. Well, because the values in numerator and denominator are the 
same. And all reasonable models will score between 0 and 1. The most 
important thing for us is that to optimize R_squared, we can optimize 
MSE. It will be absolutely equivalent since R_squared is basically MSE 
score divided by a constant and subtracted from another 
constant. These constants doesn't matter for optimization. Lets move 
on and discuss another metric called Mean Absolute Error, or MAE in 
short.  

The error is calculated as an 
average of absolute differences 
between the target values and the 
predictions. What is important 
about this metric is that it penalizes 
huge errors not as that badly as 
MSE does. Thus, it's not that 
sensitive to outliers as mean square 
error.  

R2 = 1 −
MSE

1
N ∑N

i=1 (yi − ȳ)2

ȳ =
1
N

N

∑
i=1

yi
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It also has a little bit different applications than MSE. MAE is widely 
used in finance, where $10 error is usually exactly two times worse 
than $5 error. On the other hand, MSE metric thinks that $10 error is 
four times worse than $5 error. MAE is easier to justify. And if you use 
RMSE, it would become really hard to explain to your boss how you 
evaluated your model.  

What constant is optimal for MAE? It's quite easy to find that its a 
median of the target values. In this case, it is eight. See reading 
materials for a proof.  
Just to verify that everything is correct, we again can try to grid search 
for an optimal value with a simple loop. And in fact, the value we 
found is 7.98, which indicates we were right.  

Here, we see that MAE is more robust than MSE, that is, it is not that 
influenced by the outliers. In fact, recall that the optimal constant for 
MSE was about 11 while for MAE it is eight. And eight looks like a 
much better prediction for the points on the left side. If we assume 
that point with a target 27 is an outlier and we should not care about 
the prediction for it. Another important thing about MAE is its 
gradients with respect to the predictions.  

The gradient end is a step function 
and it takes -1 when  is smaller than 
the target and +1 when it is larger. 
Now, the gradient is not defined when 
the prediction is perfect, because 
when  is equal to Y, we can not 
evaluate gradient. It is not defined. So 
formally, MAE is not differentiable, but 
in fact, how often your predictions 
perfectly measure the target. Even if 
they do, we can write a simple IF 
condition and return 0 when it is the case and the gradient otherwise. 
Also know that second derivative is zero everywhere and not defined in 
the point zero.  

I want to end the discussion with the last note. Well, it has nothing to 
do with competitions but every data scientists should understand this. 
We said that MAE is more robust than MSE. That is, it is less sensitive 

̂Y

̂Y
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to outliers, but it doesn’t mean it is always better to use MAE. No, it 
does not. It is basically a question. Are there any real outliers in the 
dataset or there are just, let's say, unexpectedly high values that we 
should treat just as others? Outliers have usually mistakes, 
measurement errors, and so on, but at the same time, similarly 
looking objects can be of natural kind. So, if you think these unusual 
objects are normal in the sense that they're just rare, you should not 
use a metric which will ignore them. And it is better to use MSE. 
Otherwise, if you think that they are really outliers, like mistakes, you 
should use MAE. So in this video, we have discussed several important 
metrics. We first discussed, mean square error and realized that the 
best constant for it is the mean targeted value. Root Mean Square 
Error, RMSE, and R_squared are very similar to MSE from optimization 
perspective. We then discussed Mean Absolute Error and when people 
prefer to use MAE over MSE. In the next video, we will continue to 
study regression metrics and then we'll get to classification ones. 

Regression Metrics: Review II 
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We need to predict, how many laptops two shops will sell? And in the 
train set for a particular date, we see that the first shop sold 10 items, 
and the second sold 1,000 items.  

Now suppose our model predicts 9 items instead of 10 for the first 
shop, and 999 instead of 1,000 for the second. It could happen that off 
by one error in the first case, is much more critical than in the second 
case. But MSE and MAE are equal to one for both shops predictions, 
and thus according to those metrics, these off by one errors are 
indistinguishable. 

Shop 1 predicted     9, sold        10, MSE 1 
Shop 2 predicted 999, sold     1000, MSE 1 

Shop 1 predicted    9, sold     10, MSE        1 
Shop 2 predicted 900, sold 1000, MSE 10000 

Shop 1 predicted    9, sold     10, relative_metric 1 
Shop 2 predicted 900, sold 1000, relative_metric 1 

This is basically because MSE and MAE work with absolute errors while 
relative error can be more important for us. Off by one error for the 
shops that sell ten items is equal to mistaking by 100 items for shops 
that sell 1,000 items. 
On the plot for MSE and 
MAE, we can see that all 
the error curves have 
the same shape for 
every target value. The 
cu rves a re k ind o f 
shifted version of each 
o t h e r. T h a t i s a n 
indicator that metric 
works with absolute 
errors.  

The relative error preference can be expressed with Mean Square 
Percentage Error, MSPE in short, or Mean Absolute Percentage Error, 
MAPE. MSPE and MAPE can also be thought as weighted versions of 
MSE and MAE, respectively.  
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For the MAPE, the weight of each sample is inversely proportional to 
it's target. While for MSPE, it is inversely proportional to a target 
square. Know that the weight do not sum up to one here.  

You can take a look at this individual error plus for our individual 
sample dataset. Now, we see the cost became more flat as the target 
value increases. It means that, the cost we pay for a fixed absolute 
error, depends on the target value. And as the target increases, we 
pay less.  

Let’s now think, what are the optimal constant predictions for these 
metrics?  
Recall that for MSE, the optimal 
constant is the mean over target 
values. Now, for MSPE, the 
weighted version of MSE, in turns 
out that the optimal constant is 
weighted mean of the target 
values. For our dataset, the 
optimal value is about 6.6, and we 
see that it's biased towards small 
targets. Since the absolute error 
for them is weighted with the 
highest weight, and thus impacts 
metric the most.  
 
Now the MAPE, this is a question 
for you. What do you think is an 
optimal constant for it? Just use 
your intuition here and knowledge 
f r o m t h e p r e v i o u s s l i d e s . 
Especially recall that MAPE is 
weighted version of MAE. The 
right answer is, the best constant 
is weighted median.  

It is not a very commonly used 
quantity actually, so take a look 
for a bit of explanation in the 
reading materials.  
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The optimal value here is 6, and it is even smaller than the constant 
for MSPE. But do not try to explain it using outliers. If an outlier had a 
very, very small value, MAPE would be very biased towards it, since 
this outlier will have the highest weight.  

All right, the last metric in this video, Root Mean Square Logarithmic 
Error, or RMSLE in short. What is RMSLE? It is just an RMSE calculated 
in logarithmic scale.  

A constant is usually added to the predictions and the targets before 
applying the logarithmic operation. This constant can also be chosen to 
be different to one. It depends on organizer's needs. So, this metric is 
usually used in the same situation as MSPE and MAPE. But note the 
asymmetry of the error curves. From the perspective of RMSLE, it is 
always better to predict more than the same amount less than target.  

Same as root mean square error doesn't differ much from mean 
square error, RMSLE can be calculated without root operation. But the 
rooted version is more widely used. It is important to know that the 
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plot we see here on the slide is built for a version without the 
root. And for a root version, an analogous plot would be misleading.  

Now let's move on to the question about the best constant. Just recall 
what is the best constant prediction for RMSE and use the connection 
between RMSLE and RMSE.  

To find the constant, we should realize that we can first find the 
best constant for RMSE in the log space, will be the weighted mean in 
the log space. And after that, we need to get back from log space to 
the usual one with an inverse transform.  

The optimal constant turns out to be 9.1. It is 
higher than constants for both MAPE and 
MSPE. Here we see the optimal constants for 
the metrics we've broken down.  

MSE is quite biased towards the huge value from our dataset, while 
MAE is much less biased. MSPE and MAPE are biased towards smaller 
targets because they assign higher weight to the object with small 
targets. And RMSLE is frequently considered as better metrics than 
MAPE, since it is less biased towards small targets, yet works with 
relative errors. I strongly encourage you to think about the baseline 
for  metrics that you can face for first time.  

It truly helps to build an intuition and to find a way to optimize the 
metrics. So, in this video, we will discuss different metrics that works 
with relative errors. MSPE, means square percentage error, MAPE, 
mean absolute percentage error, and RMSLE, root mean squared 
logarithmic error. We'll discussed the definitions and the baseline 
solutions for them.  
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Classification Metrics Review 
- Accuracy  
- Logarithmic loss 
- Area under a receiver operating curve,  
- Cohen's Kappa. And specifically Quadratic weighted Kappa.  

If you see an expression in square brackets, that is an indicator 
function. It yields one if the expression is true and zero if it's false. 
Throughout the video, we'll use two more terms: hard labels or hard 
predictions, and soft labels or soft predictions. Usually models output 
some kind of scores. For example, probabilities for an objects to 
belong to each class.  

The scores can be written as a vector of size L, and I will refer to this 
vector as to soft predictions. Now in classification we are usually asked 
to predict a label for the object, do a hard prediction.  

To do it, we usually find a maximum value in the soft predictions, and 
set class that corresponds to this maximum score as our predicted 
label. So hard label is a function of soft labels, it's usually arg max for 
multi-class tasks, but for binary classification it can be thought of as a 
thresholding function.  

Let's start our journey with the accuracy score. Accuracy is the most 
straightforward measure of classifiers quality.  
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To compute accuracy, we need hard predictions. We need to assign 
each object a specific table. Now, what is the best constant to predict 
in case of accuracy? Actually, there are a small number of constants to 
try. We can only assign a class label to all the objects at once. So what 
class should we assign? Obviously, the most frequent one. Then the 
number of correctly guessed objects will be the highest.  

But exactly because of 
that reason, there is a 
caveat in interpreting the 
values of the accuracy 
score.  
Take a look at example in 
f i g u r e t o t h e r i g h t . 
Imagine you tell someone 
that your classifier is 
correct 9 times out of 10.  

The person would probably think you have a nice model. But in fact, 
your model just predicts dog class no matter what. So the problem is, 
that the baseline accuracy can be very high for a data set, even 99%, 
and that makes it hard to interpret the results. Although accuracy 
score is very clean and intuitive, it turns out to be quite hard to 
optimize.  
Accuracy also doesn't care how confident the classifier is in the 
predictions, and what soft predictions are. It cares only about arg max 
of soft predictions. And thus, people sometimes prefer to use different 
metrics that are first, easier to optimize. And second, these metrics 
work with soft predictions, not hard ones. One of such metrics is 
logarithmic loss. It tries to make the classifier to output two posterior 
probabilities for their objects to be of certain class. 

 

 

LogLossbinary = −
1
N

N

∑
i=1

yilog( ̂yi) + (1 − yi)log(1 − ̂yi)

LogLossmulti−class = −
1
N

N

∑
i=1

L

∑
l=1

yil log( ̂yili)

�  of �16 53



In practice  

  

For binary, it is assumed that y_hat is a number from [0, 1] range, and 
it is a probability of an object to belong to class one.  

In multi-class case,  is a 
vector of size L, and its sum is 
exactly 1. The elements are the 
probabilities to belong to each 
of the classes.  

Okay, now let us analyze it a 
little bit. Assume a target for 
an object is 0, and here on the 
plot, we see how the error will 
change i f we change our 
predictions from 0 to 1.  

For comparison, we'll plot absolute error with another color. Logloss 
usually penalizes completely wrong answers and prefers to make a lot 
of small mistakes to one severer mistake. Now, what is the best 
constant for logarithmic loss?  

LogLossmulticlass = −
1
N

N

∑
i=1

L

∑
l=1

yil min(ma x(log( ̂yili), 10−15), 1 − 10−15))

̂yi
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It turns out that you need to set predictions to the frequencies of each 
class in the dataset.  How do I know that is so?  

To prove it we should take a derivative with the respect to constant 
alpha, set it to 0. Okay, we've discussed accuracy and log loss, now 
let's move on.  

Take a look at the example. We 
show ground truth target value 
with color, and the position of 
the point shows the classifier 
score.  

Recall that to compute accuracy 
score for a binary task, we 
usually take soft predictions 
from our model and apply 
threshold.  

We can see the prediction to be green if the score is higher than 0.5 
and red if it's lower. For this example the accuracy is 6/7, as we 
misclassified one red object. But look, if the threshold was 0.7, then all 
the objects would be classified correctly. So this is kind of motivation 
for our next metric, Area Under Curve. We shouldn't fix the threshold 
for it, but this metric kind of tries all possible ones and aggregates 
those scores.  

So this metric doesn't really cares about absolute values of the 
predictions. But it depends only on the order of the objects. Actually, 
there are several ways AUC, can be explained. The first one explains 
under what curve we should compute area. And the second explains 
AUC as the probability of object pairs to be correctly ordered by our 
model. We will see both explanations in a moment. So let's start with 
the first one. We need to calculate an area under a curve. What 
curve? Let's construct it. Once again, say we have six objects, and 
their true label is shown with a color. And the position of the dot shows 
the classifier's predictions. And for now we will use word positive as 
synonym to belongs to the red class. So positive side is on the 
left. What we will do now, we'll go from left to right, jump from one 
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object to another. And for each we will calculate how many red 
and green dots are there to 
the left, to this object that we 
stand on.  

The red dots we'll have a 
n a m e f o r t h e m , t r u e 
positives. And for the green 
ones we'll have name false 
positives. So we will kind of 
compute how many true 
positives and false positives 
we see to the left of the 
object we stand on. Actually it's very simple, we start from bottom left 
corner and go up every time we see red point. And right when we see 
a green one. Let's see. So we stand on the leftmost point first. And it 
is red, or positive. So we increase the number of true positives and 
move up. Next, we jump on the green point. It is false positive, and so 
we go right. Then two times up for two red points. And finally two 
times right for the last green point. We finished in the top right 
corner. And it always works like that. We start from bottom left 
and end up in top right corner when we jump on the right most 
point. By the way, the curve we've just built is called Receiver 
Operating Curve or ROC Curve.  

And now we are ready to calculate an area under this curve.  

The area is seven and we need to normalize it by the total plural area 
of the square. So AUC is 7/9, cool. Now what AUC will be for the data 
s e t t h a t c a n b e 
separated with a threshold, 
l i k e i n o u r i n i t i a l 
example? Actually AUC will 
be 1, maximum value of 
AUC. So it works.  

It doesn't need a threshold 
to be specified and it doesn't 
depend on absolute values. 
Recall that we've never used 
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absolute values while constructing the curve. Now in practice, if you 
build such curve for a huge data set in 
real classifier, you would observe a 
picture like the one on the right. Here 
curves for different classifiers are shown 
with different colors. The curves usually 
lie above the dashed line which shows 
how would the curve look like if we 
made predictions at random. So it kind 
of shows us a baseline. And note that 
the area under the dashed line is 0.5. All 
right, we've seen that we can build a 
curve and compute area under it.  

There is another total different explanation for the AUC. Consider all 
pairs of objects, such that one object is from red class and another 
one is from green. AUC is a probability that score for the green one 
will be higher than the score for the red one. In other words, AUC is a 
fraction of correctly ordered pairs. You see in our example we have 
two incorrectly ordered pairs and nine pairs in total. And then there 
are 7 correctly ordered pairs and thus AUC is 7/9.  

Exactly as we got before, while computing area under the curve. All 
right, we've discussed how to compute AUC. Now let's think what is 
the best constant prediction for it. In fact, AUC doesn't depend on the 
exact values of the predictions. So all constants will lead to the same 
score and this score will be around 0.5, the baseline. This is actually 
something that people love about AUC. It is clear what the baseline 
is. Of course there are flaws in AUC, every metric has some. But still 
AUC is metric I usually use when no one sets up another one for me.  
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All right, finally let's get to the last metric to discuss, Cohen's Kappa 
and it's derivatives. Recall that if we always predict the label of the 
most frequent class, we can 
already get pretty high 
accuracy score, and that 
can be misleading. Actually 
in our example all the 
models we fit, will have a 
score somewhere between 
0.9 and 1. So we can 
introduce a new metric such 
that for an accuracy of 1 it 
would give us 1, and for the 
baseline accuracy it would 
output 0. And of course, 
baselines are going to be different for every data, not necessarily 0.9 
or whatever.  
It is also very similar to what  does with MSE. It informally is kind of 
normalizing it. So we do the same here. And this is actually already 
almost Cohen's Kappa. In Cohen's Kappa we take another value as the 
baseline.  

We take the higher predictions for the data set and shuffle them, like 
random permutation. And 
then we calculate an 
a c c u r a c y f o r t h e s e 
shuffled predictions. And 
that will be our baseline. 
Well to be precise, we 
permute and calculate 
accuracies many times 
and take, as the baseline, 
an average for those 
computed accuracies. In 
practice, of course, we do 
no t n eed t o d o any 
permutations.  

This baseline score can be computed analytically. We need, first, to 
multiply the empirical frequencies of our predictions and grant those 

R2
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labels for each class, and then sum them up. For example, if we assign 
20 cat labels and 80 dog labels at random, then the baseline 
accuracy will be 0.2*0.1 + 0.8*0.9 = 0.74. You can find more 
examples in actually. Here I wanted to explain a nice way of thinking 
about eliminator as a baseline. We can also recall that error is equal to 
1 minus accuracy. We could rewrite the formula as 1 minus model's 
error/baseline error. It will still be Cohen's Kappa, but now, it would be 
easier to derive weighted Cohen's Kappa. To explain weighted Kappa, 
we first need to do a step aside, and introduce weighted error. See 
now we have cats, dogs and tigers to classify. And we are more or less 
okay if we predict dog instead of cat. But it's undesirable to predict cat 
or dog if it's really a tiger. So we're going to form a weight matrix 
where each cell contains The weight for the mistake we might do.  

In our case, we set error weight to be ten times larger if we predict cat 
or dog, but the ground truth label is tiger.  
So with error weight matrix, we can express our preference on the 
errors that the classifier would make.  
Now, to calculate weight and error we need another matrix, confusion 
matrix, for the classifier's prediction.  

This matrix shows how our classifier distributes the predictions 
over the objects. For example, the first column indicates that four cats 
out of ten were recognized correctly, two were classified as dogs and 
four as tigers. So to get a weighted error score, we need to multiply 
these two matrices element-wise and sum their results.  

This formula needs a 
proper normalization to 
make sure the quantity is 
between 0 and 1, but it 
doesn't matter for our 
p u r p o s e s , a s t h e 
normalization constant 
will anyway cancel. And 
finally, weighted kappa is 
calculated as 1- weighted error/
weighted baseline error.  
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In many cases, the weight matrices are defined in a very simple 
way. For example, for classification problems with ordered labels.  
Say you need to assign each 
object a value from 1 to 3. It can 
be, for instance, a rating of how 
severe the disease is. And it is 
not regression, since you do not 
allow to output values to be 
somewhere between the ratings 
and the ground truth values also 
look more like labels, not as 
numeric values to predict. 

So such problems are usually 
treated as classification problems, 
but weight matrix is introduced to account for order of the labels.  
For example, weights can be linear, if we predict two instead of one, 
we pay one.  

If we predict three instead of of one, we pay two. Or the weights can 
be quadratic, if we'll predict two instead of one, we still pay one, but if 
we predict three instead of one, we now pay for.  

Depending on what weight matrix is used, we get either linear 
weighted kappa or quadratic weighted kappa.  

The quadratic weighted kappa has been used in several competitions 
on Kaggle. It is usually explained as inter-rater agreement 
coefficient, how much the predictions of the model agree with ground-
truth raters. Which is quite intuitive for medicine applications, how 
much the model agrees with professional doctors.  

Finally, in this video, we've discussed classification matrix.  

The accuracy, it is an essential metric for classification. But a simple 
model that predicts always the same value can possibly have a very 
high accuracy that makes it hard to interpret this metric. The score 
also depends on the threshold we choose to convert soft predictions to 
hard labels. Logloss is another metric, as opposed to accuracy it 
depends on soft predictions rather than on hard labels. And it forces 
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the model to predict probabilities of an object to belong to each 
class. AUC, area under receiver operating curve, doesn't depend on 
the absolute values predicted by the classifier, but only considers the 
ordering of the object.  

It also implicitly tries all the thresholds to converge soft predictions 
to hard labels, and thus removes the dependence of the score on the 
threshold.  
Finally, Cohen's Kappa fixes the baseline for accuracy score to be 
zero. In spirit it is very similar to how R-squared beta scales MSE value 
to be easier explained.  

If instead of accuracy we used weighted accuracy, we would get 
weighted kappa. Weighted kappa with quadratic weights is called 
quadratic weighted kappa and commonly used on Kaggle. 

General Approaches for Metrics Optimization  
In this video, we will discuss  
• what is the loss and what is a metric 
• what is the difference between them  
• And then we'll overview what are the general approaches to metric 

optimization.  

Let's start with a comparison between two notions, loss and metric.  
• The metric or target metric is a function which we want to use to 

evaluate the quality of our model. For example, for a classification 
task, we may want to maximize accuracy of our predictions, how 
frequently the model outputs the correct label. But the problem is 
that no one really knows how to optimize accuracy efficiently.  

• Instead, people come up with the proxy loss functions. They are 
such evaluation functions that are easy to optimize for a given 
model. For example, logarithmic loss is widely used as an 
optimization loss, while the accuracy score is how the solution is 
eventually evaluated.  

So, once again, the loss function is a function that our model optimizes 
and uses to evaluate the solution, and the target metric is how we 
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want the so lut ion to be 
evaluated.  

This is kind of expectation 
v e r s u s r e a l i t y t h i n g .  
Sometimes we are lucky and 
the model can optimize our 
target metric directly. For 
example, for mean square 
error metric, most libraries can 
optimize it out of the box. So 
the loss function is the same 
as the target metric. And 
sometimes we want to optimize metrics that are really hard or even 
impossible to optimize directly. In this case, we usually set the model 
to optimize a loss that is different to a target metric, but after a model 
is trained, we use hacks and heuristics to negate the discrepancy and 
adjust the model to better fit the target metric.  

We will see the examples for both cases later. And the last thing to 
mention is that loss metric, cost objective and other notions are more 
or less used as synonyms. It is completely okay to say target loss and 
optimization metric, but we will fix the wording for the clarity now. 
Okay, so far, we've understood why it's important to optimize a metric 
given in a competition. And we have discussed the difference between 
optimization loss and target metric. Now, let's overview the 
approaches to target metrics optimization in general.  

The approaches can be broadly divided into several categories, 
depending on the metric we need to optimize. Some metrics can be 
optimized directly. That is, we should just find a model that optimizes 
this metric and run it. In fact, all we need to do is to set the model's 
loss function to these metric. The most common metrics like MSE, 
Logloss are implemented as loss functions in almost every library.  

For some of the metrics that cannot be optimized directly, we can 
somehow pre-process the train set and use a model with a metric or 
loss function which is easy to optimize. For example, while MSPE 
metric cannot be optimized directly with XGBoost, we will see later 
that we can resample the train set and optimize MSE loss instead, 
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which XGBoost can optimize. Sometimes, 
we’ll optimize incorrect metric, but we'll 
post-process the predictions to fit the 
competition metric better. For some 
models and frameworks, it's possible to 
define a custom loss function, and 
sometimes it's possible to implement a 
loss function which will serve as a nice 
proxy for the desired metric. For 
example, it can be done for quadratic-
weighted Kappa, as we will see later.  

It's actually quite easy to define a custom loss function for XGBoost. 
We only need to implement a single function that takes predictions and 
the target values and computes first and second-order derivatives of 
the loss function with respect to the model’s predictions. For example, 
here you see one for the Logloss. Of course, the loss function should 
be smooth enough and have well-
behaved derivatives, otherwise XGBoost 
will go crazy. In this course, we consider 
only a small set of metrics, but there are 
plenty of them in fact. And for some of 
them, it is really hard to come up with a 
neat optimization procedure or write a 
custom loss function. 

Thankfully, there is a method that always 
works. It is called early stopping, and it is 
very simple. You set a model to optimize 
any loss function it can optimize and you 
monitor the desired metr ic on a 
validation set. And you stop the training 
when the model starts to fit according to 
the desired metric and not according to 
the metric the model is truly optimizing. 
That is important. Of course, some 
metrics cannot be even easily evaluated. For example, if the metric is 
based on a human assessor's opinions, you cannot evaluate it on every 
iteration. For such metrics, we cannot use early stopping, but we will 
never find such metrics in a competition. So, in this video, we have 
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discussed the discrepancy between our target metric and the loss 
function that our model optimizes. We've reviewed several approaches 
to target metric optimization and, in particular, discuss early stopping. 
In the following videos, we will go through the regression and 
classification metrics and see the hacks we can use to optimize them. 

Regression Metrics Optimization 

So far we've discussed different metrics, their definitions, and intuition 
for them. We've studied the difference between optimization loss and 
target metric. In this video, we'll see how we can efficiently optimize 
metrics used for regression problems.  

We've discussed, we always can use early stopping. So I won't 
mention it for every metrics. But keep it in mind. Let's start with mean 
squared error. It's the most commonly used metric for regression 
tasks. So we should expect it to be easy to work with. In fact, almost 
every modeling software will implement MSE as a loss function. So all 
you need to do to optimize it is to turn this on in your favorite library.  

And here are some of the library that 
support mean square error optimization. 
Both XGBoost and LightGBM will do it 
easily.  

A RandomForestRegresor from a sklearn 
also can split based on MSE, thus 
optimizing [inaudible]. A lot of linear 
models are implemented in SKlearn, and 
most of them are designed to optimize 
MSE. For example, ordinarily squares, 
ridge regression, regression and so on. There's also SGRegressor class 
in Sklearn. It also implements a linear model but differently to other 
linear models in Sklearn. It uses stochastic gradient decent to train it, 
and thus very versatile. Well and of course MSE was built in. Vowpal 
Wabbit, the library for online learning of linear models, also accepts 
MSC as loss function. But every neural net package like PyTorch, 
Keras, Flow, has MSE loss implemented. You just need to find an 
example on GitHub or wherever, and see what name MSE loss has in 
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that particular library. For example, it is sometimes called L2 loss, as 
L2 distance in Math looks the same. 

But basically for all the metrics we consider in this lesson, you may 
find plenty of names since they were used and discovered 
independently in different communities.  

Now, what about mean absolute error? MAE is popular too, so it is 
easy to find a model that will optimize it. Unfortunately, the beloved 
XGBoost cannot optimize MAE because MAE has zero as a second 
derivative while LightGBM can. So you still can use gradient boosting 
decision trees to this metric. MAE [inaudible] criteria was implemented 
for RandomForestRegressor from Sklearn. But note that running time 
will be quite high compared with MSE criterion. Unfortunately, linear 
models from SKLearn including SGRegressor can not optimize MAE 
negatively. But, there is a loss called Huber Loss, it is implemented in 
some of the models. Basically, it is very similar to MAE, especially 
when the errors are large. We will discuss it in the next slide.  

In VowPal Wabbit, MAE loss is 
implemented, but under a different 
name that's called quantile loss. In 
fact, MAE is just a special case of 
quantile loss.  

Although I will not go into the details 
here, but just recall that MAE 
is somehow connected to median 
values and median is a particular 
quantile.  

What about neural networks? As we've discussed MAE is not 
differentiable only when the predictions are equal to target. And it is of 
a rare case. That is why we may use any model train to put to 
optimize MAE.  

It may be that you will not find MAE implemented in a neural library, 
but it is very easy to implement it. In fact, all the models need is a 
loss function gradient with respect to predictions. And in this case, this 
is just a set function. Different names you may encounter for MAE is, 
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L1 that fit and a one loss, and 
sometimes people refer to that 
special case of quintile regression 
as to median regression. There are 
a lot of ways to make MAE smooth. 
You can actually make up your own 
smooth function that have a plot 
that looks like MAE error. The most 
famous one is Huber loss. It's 
basically a mix between MSE and 
MAE.  
MSE is computed when the error is 
small, so we can safely approach 
zero error. And MAE is computed for 
large errors given robustness.  

So, to this end, we discussed the libraries that can optimize mean 
square error and mean absolute error. Now, let's get to not as common 
relative metrics. MSPE and MAPE.  

It's much harder to 
find a model which 
can optimize them 
out of the box. Of 
c o u r s e w e c a n 
a l w a y s e i t h e r 
implement a custom loss for XGBoost or a neural net. It is really easy 
to do there. Or we can optimize different metric and do early stopping. 
But there are several specific approaches that I want to mention.  

This approach is based on the fact 
that MSPE is a weighted version of 
MSE and MAPE is a weighted version 
of MAE. On the right side, we see 
expression for sample weights for 
M S P a n d M A P. T h e s u m i n 
denominator just ensures that the 
weights are summed up to 1, but it's 
not required.  
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Intuitively, the sample weights are indicating how important the object 
is for us while training the model. The smaller the target, is the more 
important the object. So, how do we use this knowledge?  

In fact, many libraries accept sample weights.  

Say we want to optimize MSP. So if 
we can set sample weights to the 
ones from the previous slide, we can 
use MSE loss with it.  

And, the model will actually optimize 
desired MSPE loss. Although most 
important libraries like XGBoost, 
LightGBM, most neural net packages 
support sample weighting, not every 
library implements it.  

But there is another method which works whenever a library can 
optimize MSE or MAE. Nothing else is needed. All we need to do is to 
create a new training set by sampling it from the original set that we 
have and fit a model with, for example, MSE criterion if you want to 
optimize MSPE. It is important to set the probabilities for each object 
to be sampled to the weights we've calculated.  

The size of the new data set is up to you. You can sample for example, 
twice as many objects as it was in original train set. And note that we 
do not need to do anything with the test set. It stays as is.  

I would also advise you to re-sample train set several times. Each time 
fitting a model. And then average models predictions, if we'll get the 
score much better and more stable. There is also another way we can 
optimize MSPE. This approach was widely used during Rossmund 
Competition on Kaggle. It can be proved that if the errors are small, 
we can optimize the predictions in logarithmic scale. Where it is similar 
to what we will do on the next slide actually. We will not go into details 
but you can find a link to explanation in the reading materials.  

And finally, let's get to the last regression metric we have to 
discuss. Root mean square logarithmic error. It turns out quite easy to 
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optimize. All we need to do is first to apply a transform to our target 
variables. In this case, logarithm of the target plus one.  

Let's denote the transformed 
target with z variable right now.  

And then, we need to fit a model 
with MSE loss to transform 
target. To get a prediction for a 
test subject, we first obtain the 
p r e d i c t i o n , z _ h a t , i n t h e 
logarithmic scale just by calling 
model.predict or something like 
that.  

And next, we do an inverse transform from logarithmic scale back to 
the original by exponentiating z_hat and subtracting one, and this is 
how we obtain the predictions y hat for the test set. In this video, we 
run through regression matrix and tools to optimize them. MSE and 
MAE are very common and implemented in many packages. RMSPE 
and MAPE can be optimized by either resampling the data set 
or setting proper sample weights. RMSLE is optimized by optimizing 
MSE in log space. In the next video, we will see optimization 
techniques for classification matrix. 

Classification Metric Optimization I 

In this and the next section, we will discuss, what are the ways to 
optimize classification metrics. Here, we will discuss logloss and 
accuracy, and in then AUC and quadratic-weighted kappa. Let's start 
with logloss for classification which is 
l ike MSE for regression. It is 
implemented everywhere. All we 
need to do is to find out what 
arguments should be passed to a 
library to make it use logloss for 
training.  

There are a huge number of libraries 
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to try, like XGBoost, LightGBM, Logistic 
Regression, and SGDRegressor classifier 
from sklearn, Vowpal Wabbit. All neural 
nets, by default, optimize logloss for 
classification.  

Random forest classifier predictions turn 
out to be quite bad in terms of logloss. 
But there is a way to make them better, 
we can calibrate the predictions to better 
fit logloss. We've mentioned several 
times that logloss requires model to 
output posterior probabilities, but what 
does it mean?  

It actually means that if we take all the 
points that have a score of, for example, 
0.8, then there will be exactly four times 
more positive objects than negatives. 
That is, 80% of the points will be from 
class 1, and 20% from class 0. If the 
classifier doesn't directly optimize 
logloss, its predictions should be 
calibrated.  

Take a look at this plot, the blue line 
shows sorted by value predictions 
for the validation set. And the red 
line shows correspondent target 
va lues smoothed wi th ro l l ing 
window. We clearly see that our 
predictions are kind of conservative. 
They are much greater than true target mean on the left side, and 
much lower than they should be on the right side. So this classifier is 
not calibrated, and the green curve shows the predictions after 
calibration, that is, if we plot sorted predictions for calibrated classifier, 
the curve will be very similar to target rolling mean. And in fact, the 
calibrated predictions will have lower log loss.  
Now, there are several ways to calibrate predictions, for example, we 
can use so-called Platt scaling. Basically, we just need to fit a logistic 
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regression to our predictions. I will not go into the details how to do 
that, but it's very similar to how 
we stack models, and we will 
discuss stacking in detail in a 
different video.  

Second, we can fit isotonic 
regression to our predictions, and 
again, it is done very similar to 
stacking, just another model.  
Wh i l e f i na l l y, we can use 
stacking.  

So the idea is, we can fit any classifier. It doesn't need to optimize 
logloss, it just needs to be good, for example, in terms of AUC. And 
then we can fit another model on top, that will take the predictions of 
our model and calibrate them properly. And that model on top will use 
logloss as its optimization loss. So it will be optimizing indirectly, and 
its predictions will be calibrated.  

Logloss was the only metric that is easy to optimize directly. There is 
no easy recipe how to directly optimize accuracy. 
  
In general, the recipe is following: if it is a binary classification 
task, fit any metric, and tune with the binarization threshold. For 
multi-class tasks, fit any metric and tune parameters comparing the 
models by their accuracy score, not by the metric that the models 
were really optimizing.  

So this is kind of early stopping, and 
the cross validation, where you look 
at the accuracy score. Just to get an 
intuition why accuracy is hard to 
optimize, let's look at this plot.  
So on the vertical axis we will show 
the loss, and the horizontal axis 
shows signed distance to the decision 
boundary, for example, to the 
hyperplane of a linear model. The 
distance is considered to be positive if 
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the class is predicted correctly. And negative if the object is located at 
the wrong side of the decision boundary.  

The blue line here shows 0/1 loss, this is the loss that corresponds to 
accuracy score. We pay 1 if the object is misclassified, that is, the 
object has negative distance, and we pay nothing otherwise.  

The problem is that, this loss has zero gradient almost everywhere, 
with respect to the predictions. And most learning algorithms require a 
nonzero gradient to fit, otherwise it's not clear how we need to change 
the predictions such that loss is decreased.  

And so people came up with proxy losses that are upper bounds for 
these zero-one loss. So if you perfectly fit the proxy loss, the accuracy 
will be perfect too, but differently to zero-one loss, they are 
differentiable. For example, you see here logistic loss, the red curve 
used in logistic regression, and Hinge loss, loss used in SVM.  

Now recall that to obtain hard labels for a test object, we usually 
take argmax of our soft predictions, picking the class with a maximum 
score. If our task is binary and soft predictions sum up to 1, argmax is 
equivalent to threshold function. 

So we've a l ready seen th is 
example where threshold 0.5 is not 
optimal. So what can we do? We 
can tune the threshold we apply. 
We can do it with a simple grid 
search implemented with a for 
loop. Well, it means that we can 
basical ly f i t any suff ic ient ly 
powerful model. It will not matter 
much what loss exactly, say, Hinge or logloss, the model will optimize. 
All we want from our model's predictions is the existence of a good 
threshold that will separate the classes.  

Also, if our classifier is ideally calibrated, then it is really returning 
posterior probabilities. And for such a classifier, threshold 0.5 would be 
optimal, but such classifiers are rarely the case, and threshold tuning 
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helps often. So in this section, we discussed logloss and accuracy, in 
the next section we will discuss AUC and quadratic weighted kappa. 

Classification Metric Optimization II 

Let's start with AUC. Although the loss function of AUC has zero 
gradients almost everywhere, exactly as accuracy loss, there exists an 
algorithm to optimize AUC with gradient-based methods, and some 
models implement this algorithm. So we can use it by setting the right 
parameters. I will give you an idea about this method without much 

details as there is more than one way to implement it. Recall that 
originally, classification task is usually solved at the level of objects. 
We want to assign 0 to red objects, and 1 to the green ones. But we 
do it independently for each object, and so our loss is point-wise. We 
compute it for each object individually, and sum or average the losses 
for all the objects to get a total loss. Now, recall that AUC is the 
probability of a pair of the objects to be ordered in the right way. So 
ideally, we want predictions  for the green objects to be larger than 
for the red ones. So, instead of working with single objects, we should 
work with pairs of objects. And instead of using point-wise loss, we 
should use pairwise loss. A pairwise loss takes predictions and labels 
for a pair of objects and computes their loss. Ideally, the loss would be 
zero when the ordering is correct, and greater than zero when the 
ordering is not correct. But in practice, different loss functions can be 
used. For example, we can use logloss.  

̂Y
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We may think that the target for this 
pairwise loss is always 1, red minus 
green should be 1. That is why there is 
only one term in logloss objective instead 
of two. The prob function in the formula 
is needed to make sure that the 
difference between the predictions is still 
in the 0,1 range, and I use it here just 
for the sake of simplicity. Well, basically, 
XGBoost, LightGBM have pairwise loss 
we've discussed implemented. It is 
straightforward to implement in any 
neural net library, and for sure, you can 
find implementations on GitHub.  

I should say that in practice, most people 
still use logloss as an optimization loss 
without any more post-processing. I 
personally observed XGBoost learned 
with logloss to give comparable AUC 
score to the one learned with pairwise 
loss.  

Now, let's move to the last topic to 
discuss. It is Quadratic weighted Kappa 
metric. There are two methods. One is 
very common and very easy, the second 
is not that common and will require you 
to implement a custom loss function for 
either XGBoost or neural net. But we've 
already implemented it for XGBoost, so 
y o u w i l l b e a b l e t o f i n d t h e 
implementation in the reading materials.  

Let's start with the simple one. Recall 
t h a t w e ' r e s o l v i n g a n o r d e r e d 
classification problem and our labels can 
be thought as integer ratings, say from 
one to five. The task is classification as 
we cannot output, for example, 4.5 as an 
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answer. But anyway, we can treat it as a regression problem, and then 
somehow, post-process the predictions and convert them to integer 
ratings. And actually quadratic weights make Kappa as somehow 
similar to regression with MSE loss. If we allow our predictions to take 
values between the labels, that is relax the predictions. But in fact, it is 
different to MSE. So if relaxed, Kappa would be one minus MSE divided 
by something that really depends on the predictions. And it looks like 
everyone's logic is, well, there is MSE in the denominator, we can 
optimize it, and let's don't care about denominator. Well, of course it's 
not correct way to do it, but it turns out to be useful in practice. But 
anyway, MSE gives us float values instead of integers. So now, we 
need somehow to convert them into integers. And the straightforward 
way would be to do rounding all the predictions. But we can think 
about rounding as of applying a threshold. Like if the value is greater 
than 3.5 and less than 4.5, then output 3. But then we can ask 
ourselves a question, why do we use exactly those thresholds? Let's 
tune them. And again, it's just straightforward, it can be easily done 
with grid search. So to summarize, we need to fit MSE loss to our data 
and then find appropriate thresholds. Finally, there is a paper 
which suggests a way to relax classification problem to regression, but 
it deals with this- hard to deal with part in denominator that we had. I 
will not get into the details here, but it's clearly written and easy to 
understand paper, so I really encourage you to read it. And more, you 
can find loss implementation in the reading materials, and just use it if 
you don't want to read the paper.  

Finally, we finished this lesson. We've discussed that evaluation or 
target metric is how all submissions are scored. We've discussed the 
difference between target metric and optimization loss. Optimization 
loss is what our model optimizes, and it is not always the same as 
target metric that we want to optimize. Sometimes, we only can set 
our model to optimize completely different to target metric. But later, 
we usually try to post-process the predictions to make them better fit 
target metric. We've discussed intuition behind different metrics for 
regression and classification tasks, and saw how to efficiently optimize 
different metrics. I hope you've enjoyed this lesson, and see you later.  
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Quiz: 

1. What would be a logloss value for a binary classification task, if we 
use constant predictor f(x) = 0.5? Round to two decimal places. 

2. The best constant predictor for MAE metric is: 
A. .5 
B. Target 50th percentile 
C. Target median  
D. Target mode 
E. Target mean 

3. The best constant predictor for mean squared error is 
A. Target mean 
B. Average of the target vector 
C. log(y+1) where y is target vector 
D. Target variance 

4. The best constant prediction for AUC is 
A. .5  
B. Target mean 
C. Any constant will lead to the same AUC value 
D. Target median 
E. Target mean divided by target variance 
F. 1 

5. Suppose the target metric is R-squared. What optimization loss 
should we use for our models? 

A. RMSLE 
B. MAE 
C. RMSE 
D. AUC 
E. MSE 

6. Calculate AUC for these predictions: 

target 1 0 1 1 1 0 0

prediction 0.39 0.52 0.91 0.85 0.49 0.02 0.44
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Concept of Mean Encoding 

In this section, we'll cover a very powerful technique, mean 
encoding. It actually has a number of names. Some call it likelihood 
encoding, some target encoding, but in this course, we'll stick with 
plain mean encoding. The general idea of this technique is to add new 
variables based on some feature together with target. In simplest 
case, we encode each level of categorical variable with corresponding 
target mean.  
Let's take a look at the following 
example.  Here, we have some 
binary classification task in 
which we have a categorical 
variable, some city. And of 
course, we want to numerically 
encode it. The most obvious way 
and what people usually use is 
label encoding. It's what we 
have in second column.  

M e a n e n c o d i n g i s d o n e 
differently, via encoding every 
city with corresponding mean target. For example, for Moscow, we 
have five rows with three 0s and two 1s. So we encode it with 2 
divided by 5 or 0.4. Similarly, we deal with the rest of cities, pretty 
straightforward. What I've described here is a very high level idea. 
There are a huge number of pitfalls one should overcome in actual 
competition. We won’t dig into details for now, just keep it in mind.  

At first, let me explain. Why does it even work? Imagine, that our 
dataset is much bigger and contains hundreds of different cities. Well, 
let’s try to compare, of course, very abstractly, mean encoding with 
label encoding.  

We plot future histograms for class 0 and class 1. In case of label 
encoding, we'll always get totally random picture because there's no 
logical order, but when we use mean target to encode the feature, 
classes look way more separable. The plot looks kind of sorted.  
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It turns out that this sorting 
quality of mean encoding is quite 
helpful. Remember what is the 
most popular and effective way 
to so lve mach ine learn ing 
problem Is grading boosting 
trees, XGBoost or LightGBM. One 
of their few downsides is an 
inability to handle high cardinality 
categorical variables.  

Trees have limited depth. With mean 
encoding we can compensate it. We 
can reach better loss with shorter 
trees. Cross validation loss might 
even look like this.  

In general, the more complicated 
and non-l inear feature target 
dependency, the more effective is mean encoding. Further in this 
section, you will learn how to construct mean encodings. There are 
actually a lot of ways. Also keep in mind that we use classification task 
only as an example. We can use this method on other tasks as well. 
The main idea remains the same.  

Despite the simplicity of the idea, you need to be very careful with 
validation. It's got to be impeccable. It's probably the most important 
part. Understanding the correct leak-less validation is also a basis for 
staking.  

The last, but not least, are extensions. There are countless possibilities 
to derive new features from target variable. Sometimes, they produce 
significant improvements for your models.  

Let's start with some characteristics of datasets, that indicate the 
usefulness of mean encoding.  

The presence of categorical variables with a lot of levels is already a 
good indicator, but we need to go a little deeper.  
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Let’s take a look at XGBoost 
learning logs from Springleaf 
competition. I ran three models 
with different depths, 7, 9, and 
11. Train logs are on the top 
plot. Validation logs are on the 
bottom one.  
As you can see, with increasing 
the depths of t rees, our 
training curve becomes better 
and better, nearly perfect and 
that's a normal part.  

But we don't actually over fit and that's weird. Our validation score 
also increase. It's a sign that trees need a huge number of splits to 
extract info. from some variables. And we can check it for model 
dump(?). 

It turns out that some features have a tremendous amount of split 
points, like 1200 or 1600 and that's a lot. Our model tries to treat all 
those categories differently and they are also very important for 
predicting the target. We can help our model via mean encodings.  

There is a number of ways to 
calculate encodings. The first 
one is the one we've been 
discussing so far. Simply 
t a k i n g m e a n o f t a r g e t  
variable.  

Another popular option is to 
take natural log of th is 
value, it's called weight of 
evidence. Or you can calculate 
all of the numbers of ones. Or 
the difference between number of ones and the number of zeros. All of 
these are variable options.  

Now, let's actually construct the features. We will do it on SpringLeaf 
dataset. Suppose we've already separated the data for train and 
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validation, X_tr and X _val 
dataFrames. These called snippet 
shows how to construct mean 
encoding for an arbitrary column 
and map it into a new dataFrame, 
train_new and val_new. We 
simply do groupby on that column 
and use target as a measure (? 
map? mean?). Results are Panda 
Series. It is then mapped to train and validation data sets by a map 
operator. After we've repeated this process for every column, we can 
fit XGBoost model on this new data.  

But something's definitely not 
right, after several epochs 
training AOC is nearly 1, while 
on validation, the score set 
rates around 0.55, which is 
practically noise. It's a clear 
sign of terrible overfitting.  

I'll explain what happened in a 
few moments. Right now, I 
want to point out that at least 
we validated correctly. We 
separated train and validation, and used all the train data to estimate 
mean encodings. If, for instance, we would have estimated mean 
encodings before train validation 
split, then we would not notice 
such an overfitting.  

Now, let's figure out the reason of 
overfitting. With rare categories, 
it's pretty common to get results 
like in an example, target 0 in 
train and target 1 in validation. 
Mean encodings turns into a 
perfect feature for such categories. 
That’s why we immediately get 
very good scores on train and fail hardly on validation.  
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So far, we've grasped the concept of mean encodings and walked 
through some trivial examples, that obviously can not use mean 
encodings like this in practice. We need to deal with overfitting first, 
we need some kind of regularization.  

Regularization 

In previous video, we realized that mean encodings cannot be used as 
is, and requires some kind of regularization on training part of data. 
Now, we'l l carry out four 
d i f f e r e n t m e t h o d s o f 
regularization, namely, doing a 
c r o s s -va l i d a t i on l o op t o 
construct mean encodings. 
Then, smoothing based on the 
size of category. Then, adding 
random noise. And finally, 
calculating expanding mean on 
some parametrization of data. We will go through all of these methods 
one by one.  

Le t ' s s ta r t w i th CV loop 
regularization. It's a very 
intuitive and robust method. 
For a given data point, we don't 
want to use target variable of 
that data point. So we separate 
the data into K non-intersecting 
subsets, or in other words, 
folds. To get mean encoding 
value for some subset, we don't 
use data points from that 
subset and es t imate the 
encoding only on the rest of 
subset. We iteratively walk through all the data subsets. Usually, four 
or five folds are enough to get decent results. You don't need to tune 
this number.  
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It may seem that we have completely avoided leakage from target 
variable. Unfortunately, it's not true.  

It will become apparent if 
we perform leave one 
out scheme to separate 
the data. I'll return to it 
a little later, but first let's 
learn how to apply this 
method in p rac t i ce . 
Suppose that our training 
data is in a DF_TR dataFrame. We will add mean encoded features into 
another train_new dataFrame.  
(Iterate through folds: use all but the current fold to calculate mean 
target for each category, and fill the current fold) 

In the outer loop, we iterate through stratified K-fold iterator in order 
to separate training data into chunks. X_tr is used to estimate the 
encoding. X_val is used to apply estimated encoding.  

After that, we iterate through all the columns and map estimated 
encodings to X_val dataFrame. At the end of the outer loop we fill 
train_new dataFrame with the result. Finally, some rare categories 
may be present only in a single fold. So we don't have the data to 
estimate target mean for them. That's why we end up with some 
NaNs. We can fill them with global mean. As you can see, the whole 
process is very simple.  

Now, let's return to the question 
of whether we leak information 
about target variable or not. 
Consider the following example.  
Here we want to encode Moscow 
via leave-one-out scheme.  

For the first row, we get 0.5, 
because there are two 1s and two 
0s in the rest of rows. Similarly, for the second row we get 0.25 and so 
on. But look closely, all the resulting and the resulting features. It 
perfect splits the data, rows with feature mean equal or greater than 
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0.5 have target 0 and the rest of rows has target 1. We didn't explicitly 
use target variable, but our encoding is biased. Furthermore, this 
effect remains valid even for the KFold scheme, just milder.  

So is this type of regularization 
useless?  

Definitely not. In practice, if you 
have enough data and use four 
or five folds, then encodings will work fine with this regularization 
strategy. Just be careful and use correct validation.  

Another regularization method is smoothing. It's based on the 
following idea. If category is big, has a lot of data points, then we 
can trust this to [INAUDIBLE] encoding, but if category is rare it's the 
opposite. Formula on the slide uses this idea. It has hyper parameter 
alpha that controls the amount of regularization. When alpha is zero, 
we have no regularization, and when alpha approaches infinity 
everything turns into global mean.  

In some sense alpha is equal to the category size we can trust. It's 
also possible to use some other formula, basically anything that 
punishes encoding of rare categories can be considered 
smooth ing. Smooth ing 
obviously won't work on its 
own but we can combine it 
with for example, CV loop 
regularization. Another way 
t o r e g u l a r i z e m e a n 
encoding is to add some 
noise. Without regularization, meaning encodings have better quality 
for the train data than for the test data. And by adding noise, we 
simply degrade the quality of encoding on training data.  

This method is pretty unstable, it's hard to make it work. The main 
problem is the amount of noise we need to add. Too much noise will 
turn the feature into garbage, while too little noise means worse 
regularization.  
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This method is usually used together with leave one out regularization. 
You need to diligently fine tune it. So, it's probably not the best option 
if you don't have a lot of 
time.  

The last regularization 
method I'm going to cover 
is based on expanding 
mean. The idea is very 
simple. We fix some sorting 
order of our data and use 
only rows from 0 to n-1 to calculate encoding for row n.  

You can check simple panda’s implementation in the code snippet. 
Cumsum stores cumulative sum of target variable up to the given row 
and cumcnt stores cumulative count.  

This method introduces the least amount of leakage from target 
variable and it requires no hyper parameter tuning. The only downside 
is that feature quality is not uniform. But it's not a big deal. We can 
average models fitted on encodings calculated from different data 
permutations.  

It's also worth noting that it is expanding mean method that is used in 
CatBoost gradient boosting to it's library, which proves to perform 
magnificently on data sets with categorical features.  

Okay, let's summarize what we've discussed in this video. We covered 
four different types of regularization.  

Each of them has its own advantages and disadvantages. Sometimes 
un-intuitively we introduce target variable leakage. But in practice, we 
can bear with it. Personally, I recommend CV loop or expanding mean 
methods for practical tasks. They are the most robust and easy to 
tune. 

Extensions and Generalizations 
In the final video, we will cover various generalizations and extensions 
of mean encodings. Namely how to do mean encoding in regression 
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and multi-class tasks. How can we apply encoding to domains with 
many-to-many relations.  

What features can we build based on target we're able in time series. 
And finally, how to encode numerical features and interactions of 
features.  

Let's start with regression tasks. They are actually more flexible for 
feature encoding. Unlike binary classification where a mean is frankly 
the only meaningful statistic we can extract from target variable. In 
regression tasks, we can try a variety of statistics, like median, 
percentile, standard deviation of target variable. We can even calculate 

some distribution bins. For example, if target variable is distributed 
between 1 and 100, we can create 10 bin features. In the first feature, 
we'll count how many data points have targeted between 1 and 10, in 
the second between 10 and 20 and so on. Of course, we need to 
regularize all of these features.  

In a nutshell, regression tasks are like classification. Just more flexible 
in terms of feature engineering.  
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Mean encoding for multi-class tasks is also pretty straightforward. For 
every feature we want to encode, we will have n different encodings 
where n is the number of classes. It actually has non obvious 
advantage. Tree models for example, usually solve multi-class task in 
one versus all fashion. So every class had a different model, and when 
we fit that model, it doesn't have any information about structure of 
other classes because they all merge into one entity.  

Therefore, together with mean encodings, we introduce some 
additional information about the structure of other classes. Domains 
w i t h many- t o -many 
relations are usually 
v e r y c o m p l e x 
and require specia l 
approaches to create 
mean encodings. I will 
give you only a very 
high level idea, consider 
an example. Binary 
classification task for 
users based on apps 
installed on their smartphones.  

Each user may have multiple apps and each app is used by multiple 
users. Hence, many-to-many relation.  

We want to mean encode apps. The hard part we need to deal with is 
that the user may have a lot of apps.  

So let's take a cross product of user and app entities. It will result in a 
so called long representation of data. We will have a role for each user 
app pair.  

Using this table, we can naturally calculate mean encoding for apps.  
So now every app is encoded with target mean, but how to map it 
back to users. Every user has a number of apps, so instead of app1, 
app2, app3, we will now have a vector like 0.1, 0.2, 0.1. That was 
pretty simple. We can collect various statistics from those vectors, like 
mean, minimal, maximum, standard deviation, and so on.  
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So far we assume that our data has no inner structure, but with time 
series we can obviously use future information.  

On one hand, it's a limitation, on the other hand, it actually allows us 
to make some complicated features.  

In data sets without time component when encoding the category, we 
are forced to use all the rules to calculate the statistic. It makes no 
sense to choose some subset of rules. Presence of time changes it. For 
a given category, we can't. For example, calculate the mean from 
previous day, previous two days, previous week, etc.  

Consider an example.  
We need to pred ic t 
which categories users 
spends money. In these 
two example we have a 
period of two days, two 
u s e r s , a n d t h r e e 
spending categories. 
Some good features 
wou l d be t he t o t a l 
a m o u n t o f m o n e y 
users spent in previous day. An average amount of money spent by all 
users in given category. So, in day 1, user 101 spends $6, user 102, 
$3. Therefore, we feel those numbers as future values for day 
2. Similarly, with the average amount by category.  
The more data we have, the more complicated features we can create.
  
In practice, it is often been official 
to mean encode numeric features 
a n d s o m e c o m b i n a t i o n o f 
features. To encode a numeric 
feature, we only need to bin it and 
then treat as categorical.  

Now, we need to answer two 
questions. First, how to bin 
numeric feature, and second how 
to select useful combination of 
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features. Well, we can find it out from the model structure by 
analyzing the trees. So at first, we fit for example, XGBoost model on 
raw features without any encodings. Let's start with numeric features.  
If numeric feature has a lot of split points, it means that it has some 
complicated dependency with target and its was trying to mean 
encode it. Furthermore, these exact split points may be used to bin the 
feature.  

So by analyzing model structure, we both identify suspicious numeric 
feature and found a good way to bin it. It's going to be a little harder 
with selecting interactions, but nothing extraordinary.  

First, let's define how to extract to way interaction from decision tree.  
The process will be similar for three way, four way arbitrary way 
interactions.  

So two features interact in a tree if they are in two neighboring notes. 
With that in mind, we can iterate through all the trees in the model 
and calculate how many times each feature interaction appeared.  

The most frequent interactions are probably worthy of mean 
encoding. For example, if we found that feature one and feature two 
pair is most frequent, then we can concatenate that those feature 
values in our data. And mean encode resulting interaction.  

Now let me illustrate how important interaction encoding may be.  

Amazon Employee Access Challenge Competition has a very specific 
data set. There are only nine categorical features. If we blindly fit say 
like GBM model on the raw features, then no matter how we return the 
parameters, we'll score in a 0.87 AUC range. Which will place roughly 
on 700 position on the leaderboard.  

Furthermore, even if we mean encode all the labels, we won't have 
any progress. But if we fit cat boost model, which internally mean 
encodes some feature interactions, we will immediately score in 0.91 
range, which will place us onto 20th this position. The difference in 
both absolute AUC values and relative leaderboard positions is 
tremendous.  
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Also note that cat boost is no silver bullet. In order to get even higher 
on the leader board, we would still need to manually add more mean 
encoded interactions.  
 
In general, if you participate in a 
c o m p e t i t i o n w i t h a l o t o f 
categorical variables, it's always 
w o r t h t r y i n g t o w o r k w i t h 
interactions and mean encodings.  

I also want to remind you about 
correct validation process. During 
all local experiments, you should at 
first split data in X_tr and X_val 
parts.  

Estimate encodings on X_tr, map 
them to X_tr and X_val, and then 
regularize them on X_tr and only 
after that validate your model on X_tr/X_val split. Don't even think 
about estimating encodings before splitting the data.  

And at submission stage, you can estimate encodings on whole train 
data. Map it to train and test, then apply regularization on training 
data and finally fit a model. And note that you should have already 
decided on regularization method and its strength in local 
experiments. 

At the end of this section, let's summarize main advantages and 
disadvantages of mean encodings.  

First of all, mean encoding allows us to make a compact 
transformation of categorical variables. It is also a powerful basis for 
feature engineering.  

Then the main disadvantage is target rebel leakage. We need to be 
very careful with validation and irregularization.  
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It also works only on specific data sets. It definitely won't help in every 
competition. But keep in mind, when this method works, it may 
produce significant improvements. 

Quiz 

1. What can be an indicator of usefulness of mean encodings? 
A. Learning to rank task 
B. A lot of binary variables 
C. Categorical variables with lots of levels. 

2. What is the purpose of regularization in case of mean encodings? 
Select all that apply. 

A. Regularization allows to make feature space more sparse. 
B. Regularization reduces target variable leakage during the 

construction of mean encodings. 
C. Regularization allows us to better utilize mean encodings. 

3. What is the correct way of validation when doing mean encodings? 

A. First split the data into train and validation, then estimate 
encodings on train, then apply them to validation, then validate the 
model on that split. 

B. Fix cross-validation split, use that split to calculate mean encodings 
with CV-loop regularization, use the same split to validate the 
model 

C. Calculate mean encodings on all train data, regularize them, then 
validate your model on random validation split. 

4. Suppose we have a data frame 'df' with categorical variable 
'item_id' and target variable 'target'. 

We create 2 different mean encodings: 

	 1.	 via df['item_id_encoded1'] = df.groupby('item_id')
['target'].transform('mean')
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	 2.	 via OneHotEncoding item_id, fitting Linear Regression on one hot-
encoded version of item_id and then calculating 'item_id_encoded2' 
as a prediction from this linear regression on the same data.


Select the true statement. 

A. 'item_id_encoded1' and 'item_id_encoded2' will be essentially the same 
only if linear regression was fitted without a regularization. 

B. 'item_id_encoded1' and 'item_id_encoded2' may hugely vary due to 
rare categories. 

C. 'item_id_encoded1' and 'item_id_encoded2' will be essentially the 
same.'item_id_encoded1' and 'item_id_encoded2' will be essentially the 
same. 
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